Long memory and the detectability of climate change

Hans von Storch, Institute of Coastal Research, Helmholtz Zentrum Geesthacht, Germany
Armin Bunde, Institute of Theoretical Physics III, University Giessen, Germany
Eduardo Zorita, Institute of Coastal Research, Helmholtz Zentrum Geesthacht, Germany

A measure of the temporal dependence in a time series $X$ is the autocorrelation function $C(\Delta) = \text{Exp}(\alpha)/(1+\alpha)^2$ for time lags $\Delta = 0, 1, 2, \ldots$.

Conditional upon the "type of memory" the autocorrelation function may be approximated by

- $C(\Delta) = \Delta^\gamma$ \text{ Short memory / autoregressive} \\
- $C(\Delta) \sim \Delta^{-\gamma}$ \text{ Long memory; $\gamma \approx (1-d)$, d Hurst coefficient}

**Case I: Inconsistency of long-term trends with natural variability**

We have analyzed six recently reconstructed records (Jones et al., 1998; Mann et al., 1999; Briffa, 2000; Esper et al., 2002; McIntyre and Mckittrick, 2003; and Moberg et al., 2005) of the Northern Hemisphere temperatures and found that all are governed by long-term persistence. Due to the long-term persistence, the mean temperature variations $s(m,L)$ between $m$ years, obtained from moving averages over $m$ years, are considerably larger than for uncorrelated or short-term correlated records. We compare the values for $s(m,L)$ with the most recent temperature changes $D_T(m,L)$ in the corresponding instrumental record and determine the year $i_0$ when this could be detected. We find, for example, that for the climatologically relevant parameters $m = 30$, $L = 100$, and the threshold 2.5, the values $i_0$ range, for all records, between (1976, 1990) for Mann et al. (1999) and (1988, 2002) for Jones et al. (1998). Accordingly, the hypothesis that at least part of the recent warming cannot be solely related to natural factors, may be accepted with a very low risk, independently of the database used.

**Case II: Clustering of records**

Previous statistical detection methods based partially on climate model simulations indicate that, globally, the observed warming lies very probably outside the natural variations. We use a more simple approach to assess recent warming at different spatial scales without making explicit use of climate simulations. It considers the likelihood that the observed recent clustering of warm record-breaking mean temperatures at global, regional and local scales may occur by chance in a stationary climate. Under two statistical null-hypotheses, autoregressive and long-memory, this probability turns to be very low: for the global records lower than $p = 0.001$, and even lower for some regional records. The picture for the individual long station records is not as clear, as the number of recent record years is not as large as for the spatially averaged temperatures.

**General significance**

When time series exhibit short or long term memory, they contain less independent samples than the time series length. When the autocorrelation function of $X$ is approximated as "short memory", it contains more independent samples than in the case of an approximation as long memory. Tests of null hypothesis operating with short term memory are more liberal than tests operating with long memory assumptions.

**Warning: sloppy language**

Instead of "system has long/short memory" or "presence of long/short memory" a more accurate albeit somewhat clumsy formulation is "the statistical properties of the time series $X$ can be suitably described by the mathematical construct of long or short memory".

**The time series of global mean temperature is instationary.**

For explaining the history of the record, in particular the recent end, a reference to external factors is needed – with other attribution studies pointing to GHGs.