Drivers of storm surge change in Hamburg

H. von Storch (1,2) and M. Meine (3)
(1) GKSS Research Center, Institute for Coastal Research, Geesthacht,
(2) CLISAP KlimaCampus, Hamburg University, Hamburg,
(3) Hamburg Port Authority, Hamburg

For the time prior to 1850, coastal defense failure was a regular phenomenon; from about 1850-1960 coastal defense was hardly challenged, and after 1962 storm surge heights rose to levels never recorded before. The most likely causes for this change are modifications of the Elbe estuary, related to coastal defense and improving the shipping channel. Anthropogenic climate change may lead in the future to even higher storm surges (mainly because of increased sea level in the German Bight). However, this increase possibly may be mitigated by the "tidal Elbe project", designed to reduce upstream river sediment transport.

Past development in Hamburg

Storm surge heights (vertical bars) and dike heights (green horizontal lines) as recorded at the tide gauge St Pauli in Hamburg from 1750 to 2004. The red stars indicate dyke failures. Adapted from Landesbetrieb für Strassen, Brücken und Gewässer in Hamburg.

Differences of storm surge heights (left; cm) and timing (right; hours) in Cuxhaven (at the mouth of the river Elbe) and Hamburg St. Pauli (some 140 km upstream of Cuxhaven). The 1962 event, which was causing the significant investments into coastal defense, is marked by a vertical line. The linear curves are subjective estimates.

Scenarios

Estimated regional mean sea level (time series of the leading EOF mode of annual mean RMSL) in the German Bight, North Sea – in red: the 19-year moving average. Units: m (Albrecht et al., 2010)

Scenarios for future changes of storm surge heights in Cuxhaven at the mouth of the estuary and Hamburg St. Pauli 140 km upstream of the river Elbe. Incorporated are the effects of changing storminess and of global mean sea level; ongoing geological processes are not considered. The ranges represent uncertainties related to the usage of different models and different emission scenarios. (Grossmann et al., 2007)