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ABSTRACT

The derivation of local scale information from integrations of coarse-resolution general circulation models
(GCM) with the help of statistical models fitted to present observations is generally referred to as statistical
downscaling. In this paper a relatively simple analog method is described and applied for downscaling purposes.
According to this method the large-scale circulation simulated by a GCM is associated with the local variables
observed simultaneously with the most similar large-scale circulation pattern in a pool of historical observations.
The similarity of the large-scale circulation patterns is defined in terms of their coordinates in the space spanned
by the leading observed empirical orthogonal functions.

The method can be checked by replicating the evolution of the local variables in an independent period. Its
performance for monthly and daily winter rainfall in the Iberian Peninsula is compared to more complicated
techniques, each belonging to one of the broad families of existing statistical downscaling techniques: a method
based on canonical correlation analysis, as representative of linear methods; a method based on classification
and regression trees, as representative of a weather generator based on classification methods; and a neural
network, as an example of deterministic nonlinear methods.

It is found in these applications that the analog method performs in general as well as the more complicated
methods, and it can be applied to both normally and nonnormally distributed local variables. Furthermore, it
produces the right level of variability of the local variable and preserves the spatial covariance between local
variables. On the other hand linear multivariate methods offer a clearer physical interpretation that supports
more strongly its validity in an altered climate. Classification and neural networks are generally more complicated
methods and do not directly offer a physical interpretation.

1. Introduction

General Circulation Models (GCMs) are one of the
most important tools in the study of climate variability
and climate change. These models are state-of-the art
numerical coupled models that represent several sub-
systems of the earth’s climate (atmosphere, oceans, sea-
ice, land surface processes) that are thought to be ca-
pable of simulating the large-scale state of the climate.
At planetary scales, GCMs are able to simulate reliably
the most important mean features of the global climate,
for instance, the intertropical convergence zones, the
three-dimensional atmospheric circulation cells, the jet
streams, etc. With some limitations, they also simulate
reasonably well essential features of the ocean circu-
lation like the western boundary ocean currents and the
conveyor belt driven by the thermohaline circulation.
Some of the latest GCMs also produce atmosphere–
ocean coupled variability in the Pacific basin similar to
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that linked to the El Niño–Southern Oscillation phe-
nomenon. With respect to the interannual variability, it
has been found that some GCMs also reproduce satis-
factorily the most important patterns of variability of
the atmospheric flow and of the sea surface temperature
(SST) at midlatitudes. However, at finer spatial reso-
lutions, with scales of a few grid distances, GCMs have
much smaller skill (Grotch and MacCracken 1991).
Many examples of the deficiencies of the global GCMs
in simulating basic local climatic variables like surface–
air temperature and precipitation have been presented,
two of which will be mentioned here.

A detailed comparison of the regional performance
of several low-resolution GCMs in the Mediterranean
Basin can be found in Cubasch et al. (1996). Therein,
it was concluded that the skill of these models in sim-
ulating the observed climate is much higher for near-
surface air temperature than for precipitation, but that
even for the former variable clear discrepancies are de-
tected. With respect to climate change, the responses
simulated by the models to a doubling of atmospheric
CO2 concentration are not univocal. In some cases two
versions of the same atmospheric model coupled to a
different ocean model produce temperature change pat-
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terns that are negatively correlated to each other. Con-
cerning the changes in simulated precipitation, each
model actually predicts patterns that are quite different
from one another.

Another example is provided by Risbey and Stone
(1996), who analyzed the performance of the Climate
Community Model model CCM2 with T42 and T106
resolutions in the Sacramento River basin in California.
They found that although the model reproduces the cor-
rect mean annual rainfall, its probability distribution dif-
fers markedly from the observations: whereas the sim-
ulated rainfall occurs mainly in the form of drizzle dis-
tributed over many rainy days, the observed rainfall is
measured in much stronger precipitation events distrib-
uted over far fewer days. There now exists a more recent
version of this model (CCM3), but to our knowledge it
has not been checked if the regional performance has
been improved.

The fact that the models do a credible job on the
global scale and fail on the regional scale seems to be
a contradiction. However, the global climate is to a great
extent the response to the differential solar forcing, the
earth rotation, and the large-scale structure of the earth’s
surface (land–sea distribution, topography). The re-
gional climates, on the other hand, are the response of
the global climate to regional details. Therefore, it seems
reasonable that GCMs are able to simulate the global
climate adequately even though none of the regional
climates is simulated skillfully.

There are several reasons for the failure of the models
on this regional scale: the spatial resolution provides an
inadequate description of the structure of the earth’s
surface. The land–sea distribution is heavily smeared
out and the mountains appear as broad flat hills. For
spectral models the truncated representation of the to-
pography is also a source of additional difficulties,
which may be severe at the local scale (Lindberg and
Broccoli 1996). A clear example is provided by the real
annual cycle of precipitation in the Alps: in the northern
side a summer rainfall maximum is observed, whereas
some hundreds of kilometers southward a winter max-
imum is apparent (Fliri 1974). It is reasonable to think
that it will be quite difficult for the GCMs to simulate
properly those small-scale features of the actual climate
and therefore the climate change assessment at those
scales will have to be considered with care.

Also, the hydrodynamics of the atmosphere are non-
linear and the energy, which is fed into the system at
the cyclonic scale, is cascaded through nonlinear inter-
actions to the smallest scales. Because of the numerical
truncation this cascade is interrupted and the flow to
smallest scales is parameterized. These parameteriza-
tions affect the smallest resolved scales most strongly.

Related also to the model resolution is the problem
of the representation of the subgrid-scale processes,
such as cloud formation, rainfall, infiltration, evapora-
tion, runoff, etc. These have to be parameterized. Ob-
viously, with increasing model resolution more and

more processes can be explicitly represented, but many
of them occur at too small scales to be realistically
modeled in the present and probably next generation of
climate models.

These processes are calculated by means of bulk for-
mulas, the parameters of which may not have been fitted
for the region of interest. These parameterizations may
produce additional errors in the GCM simulations. There
are indications (Risbey and Stone 1996; Machenhauer
et al. 1996) that this may be the most important source
of error of the GCMs, perhaps even more than its in-
adequate resolution.

However, these subgrid processes are actually those
with the greatest ecological or societal impact, since
they strongly affect the local climate at the scales of the
human and ecological environment. Therefore, there is
a broad consensus about the need to simulate the subgrid
processes and the local climates properly, perhaps be-
yond the capabilities of the current GCMs.

a. Strategies to bridge the scale gap

The efforts to improve GCM simulations have been
aimed in two directions. In the last years, with increasing
computer power, there has been a clear tendency to finer
and finer GCM horizontal resolutions. For instance,
while in 1990 a T21 resolution (about 5.68 3 5.68) for
the atmospheric submodel was considered as state-of-
the-art, some of the last integrations with atmospheric
models have been carried out with a resolution of T106
(about 1.28). This resolution is however quite costly,
and for climate change estimation the applications so
far have been restricted to the ‘‘time slice modus’’ (Cu-
basch et al. 1996). In this modus the atmospheric high-
resolution model is forced by the mean boundary con-
ditions simulated in a low-resolution atmosphere–ocean
general circulation model. On the other hand the use of
so-called limited area models (LAMs) (Giorgi and
Mearns 1991) is becoming more frequent and is being
also applied to the ocean component of the climate mod-
el (Kauker and Oberhuber 1998). These LAMs are so-
phisticated atmospheric (or oceanic) models of a limited
geographical area (of the order of 107 km2) with a res-
olution of the order of 20–50 km, that use the large-
scale fields simulated by the GCMs as boundary con-
ditions, but that take the regional characteristics, such
as topography, into account. An increased resolution in
the region of interest may improve important aspects of
the regional climate simulation. For instance, orograph-
ically induced precipitation and cyclonic activity at mid-
latitudes is better reproduced (Machenauer et al. 1996).
It is expected that an increased resolution may lead to
better regional simulations (Mearns et al. 1995). How-
ever, some problems still remain. For instance, the
LAMs developed at the UK Metereological Office
(UKMO) and in Meteo-France (based on the UKMO
GCM and the ARPAGE GCM, respectively) show sys-
tematic errors that are not solved by increasing the res-
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olution. These are probably associated with the param-
eterizations of subgrid processes, which are taken over
from the parent GCMs, and with the large-scale errors
of the coarse-resolution GCMs themselves (Machen-
hauer et al. 1996). Therefore, there seems to exist also
a need not only for finer resolutions, but also for better
subgrid parameterizations (Risbey and Stone 1996).

b. Statistical downscaling

The alternative approach to overcome the scale mis-
match between the skill of climate simulations and the
needs of ecosystem and sector models is statistical
downscaling (Giorgi and Mearns 1991; Hewitson and
Crane 1992). This technique is becoming quite popular,
due to relative simplicity and lower costs compared to
the use of LAMs. A recent comparison between some
statistical downscaling methods is given by Wilby and
Wigley (1997).

Essentially the idea of the statistical downscaling con-
sists in using the observed relationships between the
large-scale circulation and the local climates to set up
statistical models that could translate anomalies of the
large-scale flow into anomalies of some local climate
variable (von Storch 1995).

The statistical downscaling methods found in the lit-
erature are also growing in technical complexity. It may
seem reasonable to check if the results produced by
relatively complicated methods are clearly superior to
more simple and more flexible methods. It seems that
most statistical downscaling methods can be subjec-
tively classified under the headings of linear methods,
weather-type classification methods, or nonlinear deter-
ministic methods. In this paper we have chosen one
method belonging to each of these broad families and
compared their performance with a simpler analog
method. For this purpose the statistical models based
on these methods have been fitted to observed historical
large-scale data and their output is compared with the
observations in an independent period. Within its own
family each of these methods may be considered to be
technically quite complex. In this sense, due to its sim-
plicity, the analog method represents a benchmark that
any other method should be able to surpass.

An important assumption that underlies the statistical
approach to climate impact assessment is that the link
between the large-scale circulation and the local climate
remains unchanged in an altered climate, which is by
no means guaranteed. However, if the time series used
to tune the statistical model are long enough (ideally of
the order of several decades), it is reasonable to assume
that they contain many different situations, including
those that will be stronger or more probable in an altered
climate. If these situations are important for the local
climate, the statistical model should be able to identify
them in the historical observations and estimate with
some skill the probable impact on the local climate. This
assertion is only valid if the range of variations of the

large-scale variable in the new climate lies roughly with-
in the natural variability of the present climate, which
is the information used by the statistical model. How-
ever, the fact that the statistical model is able to repro-
duce reasonably the variability in the past increases the
level of confidence in the model but does not strictly
imply that it can be used for future conditions, since
the statistical relationship may not hold any more. If the
range of variations in the new climate is larger than the
observed natural variability of the observed climate, the
estimation via statistical downscaling may still be useful
but it should be considered with care. This drawback is
in some sense also present in climate change estimation
with GCM experiments, since these models contain
many parameterizations that in principle are only valid
for the present climate. However, the functional form
of these parameterizations schemes are in many cases
based on sensible physical reasoning, so that they hope-
fully will remain more or less valid in an altered climate.

To avoid to some degree the uncertainties of GCM
and LAM simulations, the ability of these models to
simulate past climates should be tested. The counterpart
requirement for statistical downscaling models is that
they should be able to reproduce the historical evolution
of the local variables when they are driven by the ob-
served large-scale circulation of the past. In the context
of climate change, an important point is the replication
of the low-frequency (decadal and longer) natural var-
iability of the local variables of interest, that may in-
clude mean values but also probability of extreme
events. The low-frequency natural variations in the form
of trends or oscillations can be considered as natural
climate changes and a good statistical model should be
able to reproduce them.

The paper is divided into seven sections. Section 2
contains the description of the data used in this study.
In section 3 the analog method for downscaling is in-
troduced. In the following sections the proposed fami-
lies of methods are described: linear methods (section
4), classification methods (section 5), and neural net-
works (section 6), and the results are in each case com-
pared with the output produced by the analog method.
The problem of the level of the variability of the sim-
ulated local variable is discussed in section 7. The paper
is closed by some concluding remarks in section 8.

2. Data description

The daily sea level pressure (SLP) data that represent
the observations originate in the National Centers for
Environmental Prediction (NCEP, previously the Na-
tional Meteorological Center) analysis provided by the
National Center for Atmospheric Research (Boulder,
Colorado). They have been used with a resolution of 58
3 58. The daily rainfall data in Spain were kindly sup-
plied by the Instituto Nacional de Meteorologı́a (Mad-
rid, Spain). Monthly rainfall records of 92 stations
(mainly in Spain and Portugal, but some of them also
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in Southern France, Morocco, and Algeria) were pro-
vided by the Universidad Complutense (Madrid, Spain).

3. The analog method

Perhaps the simplest downscaling scheme is the an-
alog method. This method has been essentially applied
in the field of weather forecasting (Lorenz 1969; Krui-
zinga and Murphy 1983), and in short-term climate pre-
diction (Barnett and Preisendorfer 1978; van den Dool
1994). For downscaling purposes the method has sel-
dom been applied (Zorita et al. 1995; Cubasch et al.
1996; Biau et al. 1999), although its idea is simple. The
large-scale atmospheric circulation simulated by a GCM
is compared to each one of the historical observations
and the most similar, in a sense that has to be still
defined, is chosen as its analog. The simultaneously ob-
served local weather is then associated to the simulated
large-scale pattern.

A relevant problem associated with this method is the
need for sufficiently long observations, so that a rea-
sonable analog of the large-scale circulation always can
be found. Due to the number of degrees of freedom of
the large-scale atmospheric circulation, it has been
pointed out (van den Dool 1994) that on a global basis
and for prediction purposes several thousand years
would be needed. However, many of these degrees of
freedom represent just background noise that can be
previously filtered out, for instance, by a standard em-
pirical orthogonal function (EOF) analysis, and in
downscaling applications the area of interest is not glob-
al but normally covers a continent or an ocean basin.
Furthermore, for downscaling purposes the analog
method is not used in a prediction scheme but rather as
a mean to specify a local state coherent with a simul-
taneous large-scale state. All this reduces the number
of degrees of freedom of the problem, and normally
useful analogs are indeed found for most of the down-
scaling applications that we have explored. In this
slightly modified form, the anomalies of the atmospheric
circulation, for instance, represented by the anomalies
of the SLP field f, are described by the few leading EOF
patterns:

n

f (i, t) 5 x (t)g (i) 1 e(t), (1)O k k
k51

where i is a gridpoint index, t is the time, gk is the kth
EOF pattern, xk(t) is the amplitude of this pattern at time
t, n is the number of EOF patterns retained, and e is
the part of the variability not described by the leading
n patterns, assumed to be small. The analogs are
searched only within the space spanned by these n EOF
patterns.

Consider an atmospheric anomaly pattern D f (r) (e.g.,
the long-term mean difference between a doubled CO2

and control simulation with a GCM or the anomaly
between an observed circulation and the long-term

mean). This pattern may have coordinates zk in this EOF
space. Its analog is defined as the circulation at time
step t that minimizes the distance in EOF space:

n

2[z 2 x (t)] . (2)O k k
k51

The method can be generalized by introducing different
weights dk on the EOF coordinates:

n

2{d [z 2 x (t)] }. (3)O k k k
k51

The weights dk may be optimized, so that the normalized
squared deviation E between the simulated and observed
local variable is as small as possible:

N T

o s 2 2E 5 [l ( j, t) 2 l ( j, t)] /s , (4)O O j
j51 t51

where lo(j, t) and ls(j, t) are the observed and generated
local variable at station j, respectively, N is the number
of stations, T is the number of time steps, and is the2s j

observed variance at station j.
The optimization procedure can be considerably dif-

ficult, since the function E has in general a complicated
topography. We will restrict here to the simpler method
contained in (2).

This method is illustrated in detail by the following
example. We are interested in the December–February
(DJF) precipitation over the Iberian Peninsula, given at
a number of irregularly distributed meteorological sta-
tions. It is assumed that this regional variable is con-
trolled to a great extent by the atmospheric variability
in the European–North Atlantic sector. The large-scale
variable will be the SLP field, which for this purpose
offers some advantages compared to geopotential height
data. First, there exist long homogeneous time series of
this variable that allow setting up the statistical model
in some period and checking it in an independent da-
taset. Second, in climate change GCM experiments, geo-
potential heights tend to be much more affected by the
global warming, but these changes may be related to
changes in the mean atmospheric density and not nec-
essarily to changes of the atmospheric circulation.
Therefore, using the geopotential heights as large-scale
field may have the effect of including a signal that is
not physically related to the atmospheric circulation and
therefore to the local variable. The SLP, on the other
hand, is much less affected. In this example the leading
five EOFs of the SLP field have been retained. They
describe 85% (75%) of the monthly (daily) variability.

To check the quality of the analog method we try to
reconstruct the time series of the winter (DJF) average
precipitation in the period 1901–89 by looking for an-
alogs of the atmospheric circulation in the period 1951–
89. In the overlapping period the analog for a particular
month is searched in the whole dataset available, but
always in a season different from the target pattern.
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FIG. 1. The first pair of canonical correlation pattern of observed DJF Iberian rainfall (contour interval, 25 mm month21) and simultaneous
SLP anomalies (hPa) in the North Atlantic sector. The correlation between the time coefficients is 0.86. The rainfall pattern explains 50%
of the variance. The stars indicate the station positions.

Since the interannual autocorrelation of the atmosphere
is negligible, this procedure should amount to searching
the analogs in an independent dataset.

To reduce the number of atmospheric degrees of free-
dom, the EOFs of the winter SLP field are calculated.
Then, the winter SLP anomalies are projected onto the
leading EOFs. The results obtained by the analog meth-
od are subsequently presented in the following sections,
compared directly with those achieved by the more com-
plicated techniques.

4. Linear methods

a. Normally distributed variables

Linear models are perhaps the most popular in the
downscaling context. They apply the huge battery of
already existing linear methods, for instance, from the
simple linear regression up to multivariate singular val-
ue decomposition, to the concept of teleconnection. For
instance, one of the first physical teleconnections iden-
tified in climate research was the link between the North
Atlantic Oscillation (NAO) and the surface–air temper-
ature in Scandinavia. This link can be applied to down-
scaling by setting up a linear regression between the
anomalies of the NAO index (the SLP difference be-
tween Azores and Iceland) and the anomalies of the
temperature in a Scandinavian station. The changes in
the strength of the NAO in a future climate can be then
translated to changes in local temperature by means of
linear regression, apart from the global temperature in-
crease.

The general idea of the linear methods is the same
as in the above example, namely, to link anomalies of
the large-scale circulation to anomalies of the local cli-
mate. However, the technical complexity of the method
can be considerably increased, as shown in this section
also dealing with the relationship between the North
Atlantic SLP and winter Iberian rainfall. This problem
has been already studied by von Storch et al. (1993).

The results shown here have been, however, obtained
with a much more dense station network.

The linear model has been set up by means of ca-
nonical correlation analysis (CCA). Given two random
vector time series X and Y, in this case the monthly
rainfall in winter (DJF) at the Iberian stations and the
monthly SLP field defined on a grid over the North
Atlantic, CCA identifies pairs of patterns whose time
evolution is optimally correlated (Barnett and Preisen-
dorfer 1978; Bretherton et al. 1992). These spatial pat-
terns are the eigenvectors of the matrices:

MX 5 , MY 5 , (5)21 21 21 21C C C C C C C CXX XY YY YX YY YX XX XY

where the C’s are the respective cross-covariance ma-
trices of the SLP (X) and local rainfall (Y) time series.
It can be shown that both matrices MX and MY have the
same positive eigenvalues , which are the squared2ck

correlation coefficients between the time series associ-
ated with the kth eigenvector of MX and MY. Otherwise
the time series are pairwise uncorrelated. This does not
necessarily mean that the processes represented by the
different CCA patterns are physically independent, but
they normally represent, at least in a first approximation,
different aspects of the variability. For more technical
details about CCA and other similar techniques the read-
er is referred to Bretherton et al. (1992). Prior to the
CCA the North Atlantic SLP and Iberian rainfall are
filtered by standard EOF analysis to reduce the number
of degrees of freedom of both fields. We will compare
the results of the CCA with the analog method in the
previous section, and therefore the same number of
EOFs for the SLP field are retained, so that the same
large-scale information enters both methods. For Iberian
rainfall the first two EOFs, that describe about 80% of
the total variance, are retained for the CCA.

The CCA performed in the period 1951–90 identifies
one dominant pair of patterns (Fig. 1). The rainfall pat-
tern is positive at all stations, with highest values near
the Atlantic coast and decreasing values toward the
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FIG. 2. Five-year-running mean time series of area-averaged DJF
rainfall anomalies (mm month21) as derived from station data in the
Iberian Peninsula (solid line); derived from the North Atlantic SLP
pressure field: analog method (dotted line) and canonical correlation
analysis (CCA, dashed line).

Mediterranean. The associated SLP pattern consists of
a low-pressure cell located over the British Isles. The
canonical pair of patterns may be physically explained
by advection by the large-scale circulation. For instance,
the SLP pattern describes variations of the advection of
air masses of Atlantic origin to the Iberian Peninsula.

The result of the CCA provides a method for esti-
mating a regional rainfall anomaly R(j, t) at a set of
stations from a given large-scale pressure anomaly field
f (i, t) in a consistent way. Mathematically, this is ac-
complished in two steps: if the pairs of CCA patterns
for the large-scale and local variable are denoted by pk

and qk, respectively, the first step is to calculate the
amplitude ak with which the kth large-scale CCA pattern
pk appears in the new SLP anomalies f (i, t). This is
achieved by minimizing the sum of squares:

2

E 5 f (i, t) 2 a (t)p (i) . (6)O O k k[ ]t,i k

Equating to zero the derivatives of E with respect to ak

leads to a linear system of equations that can be solved
by standard methods. The estimated rainfall anomalies
at station j associated with f (i, t) is just the sum of the
estimated amplitudes of the local CCA patterns:

R( j, t) 5 c a (t)q ( j), (7)O k k k
k

where ck are the canonical correlations. This procedure
is, of course, capable of describing only the part of
rainfall variance that can be traced to the atmospheric
circulation. The implicit assumption is that the observed
intermonthly SLP–rainfall relationship can be extrap-
olated to longer timescales, which is reasonable as long
as the climate variations are considered small.

The reliability of the suggested statistical relationship
is tested by reconstructing the patterns of Iberian month-
ly rainfall in winter from the beginning of this century.
The North Atlantic pressure field has undergone sig-
nificant changes during this century (Hense et al. 1990;
Shabbar et al. 1990) and this variability should have
had an effect on rainfall. Note that the data prior to 1951
have not been used to perform the CCA and, thus, rep-
resent independent samples.

The area-averaged winter rainfall, obtained indirectly
from the pressure fields and from the in situ meteoro-
logical observations are displayed in Fig. 2. The two
time series, both smoothed with a 5-yr running mean
filter, vary coherently, particularly at long timescales.
Interestingly, the method is able to reproduce the low-
frequency oscillations with a timescale of about 20 yr
and the positive rainfall trend. This confirms that winter
rainfall in this region is to a large extent controlled by
the large-scale circulation, and that the trend and the
interdecadal variations are real. This follows since the
two datasets, rainfall and pressure, are from independent
sources. However, the method overestimates a negative
rainfall anomaly around 1975. This mismatch is appar-

ent for both methods, CCA and analog. The reasons for
this disagreement are not known. It is possible that in
these years other factors than SLP alone were respon-
sible for the rainfall anomalies. Errors in either the SLP
or rainfall data could be another reason. This is, how-
ever, improbable since both have undergone detailed
quality checks.

The agreement with the observations is otherwise
good for both methods. The correlation between the
replicated and observed rainfall is slightly better for the
CCA method (actually, this method optimizes the time
correlation), and this feature is more apparent in the
unfiltered time series (not shown). On the other hand
the time series reproduced with the analog method have
a larger variance, closer to the observations. This is a
common feature of all linear models. This occurs be-
cause the linear models filter out the noise inherent in
the observations that is not related to the atmospheric
circulation. This problem is discussed in more detail in
section 7.

A caveat of the linear methods is that they cannot be
used directly when the local variables are not normally
distributed. Since the variability of the large-scale at-
mospheric circulation is usually normally distributed (at
least it is quite difficult to detect deviations from nor-
mality), the output of any linear method is bound to be
also normally distributed. There are, however, local var-
iables that strongly deviate from normality, the most
important example being perhaps daily precipitation. A
solution to this problem may be to transform the local
variable so that the distribution of the transformed var-
iable is approximately Gaussian. This is always possible
for a random variable with continuous probability den-
sity, but it is problematic for daily rainfall, since it gen-
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erally contains considerable probability mass at zero
values of rainfall. Perhaps more serious is the fact that
such a variable transformation would introduce biases
in the back-transformed means and variances (Cohn et
al. 1989). To correct for these biases, assumptions about
the normality of the noise have to be made, which may
not be always valid.

In the next subsection we present another possibility
to apply linear methods even if the local variables are
nonnormally distributed.

b. Linear methods applied to statistics of
nonnormally distributed local variables

Some climate impact models do not need time series
of local forcing functions that are consistent with the
simultaneous large-scale fields. Instead, just a few sta-
tistical properties of those time series suffice: for in-
stance, for coast protection measures it would be suf-
ficient to have information about changes in the prob-
ability of wind speed and direction. The idea is then to
establish relationships between the large-scale fields
and, for instance, the probability distribution of local
wind or the probability distribution of the length of dry
periods, etc. The interannual variability of these prob-
abilities is expected to be more normally distributed,
since they are estimated usually by suitable time av-
erages. In this case a linear technique may be successful.

In this example we focus on the probability distri-
bution of daily rainfall and the probability of the storm
interarrival times of the station Cáceres in the Iberian
Peninsula (30.58N, 6.38W) in winter (December–Feb-
ruary, hereafter DJF). The probability of the storm in-
terarrival time psit(t) is defined as the probability that
the length of dry period exceeds t days. Note that in
general psit(t 5 1) ± 1.

We choose in this case the seasonally averaged winter
SLP fields as large-scale variables. Two CCA calcula-
tions have been performed: one in which the local field
for the CCA is the winter daily rainfall distribution at
this station; and another one in which the local field is
the probability of the length of storm interarrival times.
These probability distributions are determined for each
winter season from the observations. It is clear, however,
that the estimation of the long tails of the probability
distributions will be poorer.

The CCA is otherwise analogous to the one in the
previous subsection. Since the daily dataset is shorter
the analysis is performed in the period 1965–85. The
results of both calculations are shown in Fig. 3. The
SLP canonical pattern looks similar in both cases to the
result of the CCA between SLP and monthly rainfall.
This supports the validity of this approach. The canon-
ical patterns of rainfall distribution indicate that the in-
crease of mean rainfall that occurs when the SLP in the
North Atlantic is lower than normal (Fig. 1) is mainly
caused by an increase of days with weak rainfall at the
cost of dry days, whereas the number of days with heavy

rainfall (.3 mm day21) remains almost unchanged.
With respect to the storm interarrival times the canonical
patterns indicate that the low-pressure cell over the
North Atlantic is associated with a reduction of the prob-
ability of moderate dry spells (,5 days), where the
change in the probability of longer dry spells is smaller.

To validate the statistical model the distribution of
interarrival times for the period 1942–89 may be esti-
mated based on the linear model and the SLP data in
this period. We show in Fig. 4 the evolution of the 5-day
storm-interarrival time (i.e., the probability that a dry
period would last longer than 5 days), both from the
observations and from the estimation with the CCA
method. The analog method has been also applied to
the same dataset. In this case the analogs for the whole
period are searched on a daily basis in the winter months
between 1965 and 1985. For the training period the
analogs were again searched in a season different from
the target day. The agreement between simulations and
observations is clear, especially at low frequencies. The
time series of the 90% quantile seems to be negatively
correlated with the time series of the 5-day interarrival
time, also at low frequencies, indicating that periods
with higher (lower) rainfall are associated with shorter
(longer) dry spans. This relationship is also captured by
both statistical methods.

Regarding the relative performance of the linear and
analog methods in this case, the same considerations
may apply as for the previous subsection: the temporal
fluctuations are better captured by the CCA method, but
the level of replicated variability is lower than in the
analog method.

An important point regarding the multivariate linear
methods, such as the one based on CCA, is that it yields
spatial patterns that normally allow for a physical in-
terpretation, thus increasing the degree of confidence of
the real existence of the link between large-scale cir-
culation and the local variables. This aspect is quite clear
in this example (Figs. 4 and 5). Such an interpretation
is normally much more difficult for the other methods.

5. Classification methods

The general principle underlying the classification
methods is also simple, although the practical imple-
mentation can become quite complicated. A classifi-
cation scheme of the atmospheric circulation in the area
of interest is developed and a pool of historical obser-
vations is distributed into the defined classes. The clas-
sification criteria are then applied to atmospheric cir-
culations simulated by a GCM, so that each circulation
can be classified as belonging to one of the classes. To
each observed circulation there exists a simultaneous
observation of the local variable. The value of the local
variable to be associated with the simulated large-scale
circulation can be chosen as either the average of all
regional observations simultaneous to the elements of
that class, or only the regional observations simulta-



AUGUST 1999 2481Z O R I T A A N D V O N S T O R C H

FIG. 3. Results of the two CCAs of seasonal North Atlantic SLP in wintertime and daily rainfall
amounts in Cáceres, Spain: (a) and (b) anomalies of SLP (hPa) and of daily rainfall probability
distribution (the correlation between the time coefficients is 0.87, the probability pattern explains
30% of the variance); (c) and (d) anomalies SLP (hPa) and of the probability of storm interarrival
times (the correlation between the time coefficients is 0.62, the probability pattern explains 38%
of the variance).

FIG. 4. Time series of 90% quantile of daily rainfall (mm) and probability of 5-day storm
interarrival time in Cáceres, Spain in wintertime, as observed and reconstructed from the winter
North Atlantic SLP field, by the analog method and the CCA method.
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FIG. 5. Average daily SLP anomaly field (hPa) for the three weather
states identified by CART analysis for three stations in the Iberian
Peninsula: La Coruña (northwest), Barcelona (northeast), and Cáceres
(west). (a) State 1 is associated with rain days in La Coruña and dry
days in the other two; (b) state 2 is associated with dry days in all
three stations; (c) state 3 is associated with rain days in La Coruña
and Cáceres and dry days in Barcelona.

neous to one element of the class, selected at random.
Which of both strategies is best suited depends on the
particular problem. For instance, if one is interested in
simulating local daily rainfall, averaging over all the
elements of a class will in general lead to an underes-
timation of the local rainfall variance, of extreme events,
and in general, to a local rainfall probability distribution
different from the observed. On the other hand, aver-
aging over several elements of the class will filter out
more effectively measurement errors at that station.

When validating the statistical model one should be
aware that a purely random scheme, that is, choosing
at random 1 day from sufficiently long historical ob-
servations will very probably produce the right mean,
variance, and probability distribution of local rainfall.
On the other hand the random choice within a class
makes it not advisable to compare directly one reali-
zation to the actually observed values. Therefore, for
these two reasons the assessment of the performance of
a classification method should be based generally on
other quantities involving the time structure, such as
persistence.

A practical problem is to define a method for clas-
sifying the large-scale patterns. There are many clas-
sification methods. However, it should be pointed out
that all classification schemes are to some degree sub-
jective, although some of them, once defined, allow for
a programmable classification scheme of circulation pat-
terns. In the most objective schemes only the area over
which the circulation data are taken and the number of
resulting classes has to be subjectively fixed at some
stage of the model design.

The typical example of subjective classification
schemes is the traditional Grosswetterlagen classifica-
tion of the German Weather Service for the Western
Europe–North Atlantic sector. This classification has
been used for downscaling purposes (Bárdossy and Plate
1992). Weather typing procedures have been developed
by many national weather services for their particular
regions based on the local expertise. Other well-known
subjective schemes are the Schuepp scheme for Switz-
erland (Schuepp 1953) and the Lamb classification for
the British Isles daily weather patterns (Lamb 1972).
There exists a programmable procedure (Jones et al.
1993) that takes into account the empirical rules first
proposed by Lamb.

More complicated technically is the design of an ob-
jective classification scheme. In this respect several
types of schemes can be distinguished: classifications
that depend only on the large-scale circulation data, clas-
sifications that depend on the local variable, and
schemes that use information from both data. A typical
example of the first and second group is traditional clus-
ter analysis of atmospheric circulation patterns (Cheng
and Wallace 1993). In the first case the classes of the
large-scale circulation are given directly by the analysis.
In the second case the elements of the large-scale cir-
culation class are defined as the simultaneous circulation
to each element of the local climate class. This second
method has the advantage that the resulting large-scale
classes should really correspond to different local sit-
uations, which is not necessarily the case in a classifi-
cation based only on the large-scale patterns.

An example of a quite complicated classification
based simultaneously on the large-scale circulation and
the local variable is represented by classification and
regression trees (CART; Breimann et al. 1984) analysis.
This method has been mainly applied to the simulation
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of local daily rainfall (Hughes et al. 1993; Schnur and
Lettenmaier 1998). However, due to its extensive needs
of computer time, it has been applied to a limited num-
ber of stations and it has been assumed that rainfall is
just a two-outcome process, wet or dry. The CART anal-
ysis searches recursively for a binary decision tree,
whose decision nodes are based on the values of the
large-scale atmospheric variables at some key locations,
or the values of key large-scale atmospheric indices.
Each terminal node of the tree represents a weather state.
A weather state resulting from the CART analysis is
such that the joint probability distribution of the local
variable (including all stations) based on the days be-
longing to that weather state is, in some sense, maxi-
mally different from the probability based on the other
weather states.

Since linear models can be normally applied to
monthly rainfall, classification methods are preferred for
daily rainfall. In this section we present the results of
a CART analysis of daily winter rainfall in three stations
in the Iberian Peninsula: Barcelona, La Coruña, and
Cáceres (see Fig. 1 for the location of these stations)
and the daily SLP field over the North Atlantic in win-
tertime in the period 1970–75. To reduce the dimen-
sionality of the problem the input variables for the
CART analysis are again the leading five EOFs of the
SLP field. CART is able to identify three ‘‘atmospheric
states’’ and each daily SLP field can be classified as
belonging to one of those states according to the values
of its coordinates in the five-dimensional EOF space.
The average SLP anomaly field for each state is rep-
resented in Fig. 5. State 1 is mainly connected to rain
days in one station (La Coruña) and dry days in the
other two; state 2 is most probably associated with dry
days in all three stations and state 3 with rain days in
La Coruña and Cáceres(both western stations) and dry
days in Barcelona (located at the Mediterranean sea).

New daily SLP anomaly fields, observed in another
period or simulated by a CGM, can be classified into
one of these three states and the local rainfall attached
to this circulation can be chosen at random from all the
days belonging to that particular weather state. In this
way daily time series of rainfall consistent with the con-
current SLP field can be produced. To compare the per-
formance of this method to the analog method, the prob-
ability of the length of dry periods, also known as storm
interarrival times, has been chosen (Fig. 6) in the period
1978–83. It can be seen that in general the CART meth-
od underestimates the length of the storm interarrival
times as compared with those directly estimated from
the observations. The results obtained with the analog
method tend to be closer to observations than CART.

The weather states defined by any classification
scheme can be also used to validate the performance of
a GCM and eventually investigate the reason why a
particular GCM may not be simulating properly the local
climate in a certain region. Notwithstanding the fact that
the weather classes are the result of a more or less sub-

jective definition, and if these classes are not defined in
a very restrictive manner, the GCMs in general are
grossly able to simulate their probabilities of occur-
rence, although for some weather states there may be
large deviations from observations (Hulme et al. 1993).
Much more problematic is the simulation of the local
climate associated with the individual large-scale clas-
ses, since the local climate is, for instance, quite sen-
sitive to the exact location of anticyclones or deviations
of storm tracks from the long-term mean. The best per-
formance is usually found for surface temperature in the
winter season, since this local variable is to a great
extent determined by large-scale advection. The asso-
ciated summer temperature and rainfall in both seasons,
however, are normally not so satisfactorily reproduced.

If the large-scale circulation is classified on a daily
basis, an important aspect of the validation is the dy-
namical behavior of these classes, for instance, their
mean life times. Since the weather typing is not usually
defined from a dynamical point of view, this aspect of
the validation can give more objective information on
the ability of the models to simulate the regional weath-
er. The GCMs do show some skill in reproducing the
transition probabilities of the weather types (Zorita et
al. 1995), but their performance still has to be consid-
erably improved if realistic local weather time series are
to be directly used in climate impact studies. Therefore,
some of the deficiencies in the simulation of local weath-
er scenarios lie clearly in the deficiencies of the GCMs
to simulate the evolution of the large-scale atmospheric
patterns. However, for daily rainfall there exists a more
serious problem, which remains still unsolved. Down-
scaling procedures based on classification schemes and
using only the observed large-scale circulation produce
daily rainfall time series with less persistence than in
the observations, that is, the observed time-clustering
of precipitation is not replicated by the downscaling
techniques (Hughes et al. 1993). This problem can be
partially, but not completely, reduced by simulating dai-
ly rainfall not only conditional on the daily weather
class, but also on the evolution in the previous few days
(Zorita et al. 1995). Therefore, there seems to exist in
the real rainfall process some kind of local persistence
that presumably cannot be taken into account by large-
scale processes alone (Hughes et al. 1993). This fact
complicates the statistical downscaling approach for
daily rainfall, since it would be desirable not to include
information over the local processes themselves, as long
as they are potentially not well simulated by GCMs.
The solution of including information about generated
rainfall in the previous days would be essentially equiv-
alent to using information of the atmospheric circulation
in the previous days.

6. Neural networks

Neural networks have found in the last years a wide
range of applications. A quite complete review about
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FIG. 6. Probability of the length of the storm-interarrival times in winter in three Iberian stations
(La Coruña, Barcelona, Cáceres), as observed (1951–90) (continous line) and simulated with the
analog method (dotted lines) and the CART method (dashed lines) using the historical North
Atlantic SLP observations in the same period.

this subject can be found in Lau and Widow (1990). For
applications in meteorology the reader is referred to
Elsner and Tsonis (1992) and the references therein. In
climatology recent applications comprise the El Niño–
Southern Oscillation phenomenon (Grieger and Latif
1994; Tangang et al. 1997) and Indian monsoon rainfall
(Navone and Ceccatto 1994). Neural networks have a
great potential in many contexts, but they have been
applied to the downscaling problem only in a few cases
(Hewitson and Crane 1992; Hewitson 1996).

Only the basic concepts necessary to follow this sec-
tion will be given here. Very briefly, a neural network
is an algorithm that transforms an input vector xin into
an output vector xout by stepwise nonlinear transfor-
mations, as illustrated in Fig. 7. Each transformation is
carried out in two steps. In a first step each component
of the input vector is separately transformed by ainxi

nonlinear function f :

5 f ( ).inx* xi i (8)

In a second step a linear transformation is applied to
x*:

1 1x 5 w x*. (9)Oj ij i
i

The resulting vector x1 is, in turn, the input for the next
nonlinear transformation. It is useful to think as if this
two-step process is performed by one layer of ‘‘neu-
rons’’ (Fig. 7), the whole neural network containing
several layers. Finally, the output vector xout is the result
of the operation on the last layer.

A complete model can be built when the parameters
are known. This can be achieved by fitting them withkwij

a set of known inputs (t) and outputs yi(t), by min-inxi

imizing the squared deviations:

N T

out 2[x (t) 2 y (t)] , (10)O O i i
i51 t51

where N is the number of stations and T the length of
the time series.

We have used in this example a neural network of
three layers to construct a nonlinear model that links
the daily SLP anomalies (as predictor) and daily rainfall
amounts (as predictand). The input vector is composed
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FIG. 7. Schematic structure of an algorithmic neural network.

FIG. 8. Two possible nonlinear filter functions that relate the input
and output of a neuron in a neural net. Bold line is a classical sig-
moidal type; the dashed line represents Eq. (12), more suitable for
the simulation of daily rainfall. In this plot xc 5 0.

by the principal components associated with the five
leading EOFs of the daily SLP field.

The number of elements in the intermediate layer
(sometimes called the hidden layer) is somewhat arbi-
trary but constrained by the following considerations.
First, as in any statistical model the number of param-
eters in should be kept to a minimum to avoid ov-kwij

erfitting of the noise in the training period. Otherwise
the skill of the network falls abruptly when it is applied
to a set of predictors in an independent dataset. To un-
derstand the second consideration more easily, consider
for the moment a linear network (with a linear filter
function f ) with just a single element in the hidden layer
and assume that the desired output time series are nor-
malized (m 5 0, s 5 1). Then this linear model is
comparable with a CCA model with the first pair of
canonical patterns given by and . If we think of1 2w wij ij

a canonical pair of patterns as representing a physical
process, as we did in the Iberian rainfall example, then
we should include so many neurons in the hidden layer
as many physical situations giving rise to rainfall. As a
rule of thumb, this number should be of the order of
the rainy Grosswetterlagen for this region or the number
of significant rainfall EOFs. In this example we have
included five elements in the hidden layer.

The last question that needs to be solved is the form

of the filter function f. For many applications, sigmoi-
dal-type functions of the form

1
f (x) 5 (11)

x2xc1 1 e

have been used (Fig. 8), but they are not suitable for
our downscaling purposes: the net could generate rain-
fall only in the interval (0, 1), or by rescaling in some
a priori finite interval; furthermore it could not generate
truly dry days. We have found that the function

0: x # xcf (x) 5 (12)
r(x2x )5 6ce 2 1: x . xc

gives reasonable results (Fig. 8), where the cutoff xc is
the value of the input for which the neuron becomes
active. The fact that it is not strictly differentiable at x
5 xc is not a too big practical problem. The parameter
xc can be also optimized with the same algorithm as the
parameters , with a small mathematical transforma-kwij

tion. This choice is dictated by the nature of rainfall and
is not universally applicable. For other applications oth-
er forms for the nonlinear transformation f could be
explored. Of course the form of f for the last layer of
neurons strongly influences the probability distribution
of the simulated local variable, so that a good choice
for f has to take the real distribution into account. Note
that in principle one could use different filter functions
for the different neurons, so that considerable flexibility
is possible.

Following these considerations a neural network has
been designed to describe the daily rainfall in wintertime
in Cáceres (Spain) in the period 1978–83. These winters
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include relatively well-defined wet and dry periods, so
that the skill of the net can be better illustrated. The
input variables are the coefficients of the leading five
SLP EOFs, calculated on a daily basis. The coefficients
for days t, t 2 1, t 2 2 are used to estimate the rainfall
at day t. Therefore the input layer has 15 neurons. An
intermediate layer of five neurons has been also used
to allow for nonlinear interactions among the EOF pat-
terns. The output layer consists of a single neuron. The
form of filter functions is the same for all neurons (see
Fig. 8, dashed line), but for the output neuron the ex-
ponential parameter is about five times larger. However,
the value of this parameter is not very critical since it
can be chosen a priori within a wide range and the value
of the weights can be also fitted accordingly. This fact
also points to the difficulty in ascribing physical mean-
ing to these weights. The weights and the values ofkwij

the cutoffs xc (different for each neuron) of the network
have been fitted with daily data in the winters between
1970 and 1975 by the back propagation error algorithm
(Rummelhart et al. 1986).

The winter daily SLP data in the period 1978–83 are
used to simulate rainfall at Cáceres. The results with the
neural net are also compared with those obtained with
the analog method, by looking for 3-day evolution an-
alogs in the whole dataset available except in the winter
months in 1978–83. Figure 9a shows the observed rain-
fall and the rainfall estimated by these two methods.
Figure 9b shows the same time series but smoothed with
a 5-day running mean filter.

It can be seen in Fig. 9 that the analog method re-
produces better the time evolution of daily rainfall, al-
though the agreement with observations is not optimal,
in particular on a day-to-day basis. The level of vari-
ability is also more realistic with the analog method.
The neural net shares a common drawback with other
‘‘deterministic models:’’ they produce time series with
less variance than in the observations and therefore they
tend to underestimate the frequency or intensity of
heavy rainfall and the frequency of dry days. The agree-
ment with the observations is clearer for both methods
in the smoothed data time series, indicating that there
exists high-frequency variability that is not captured by
both methods. Note that only information from the SLP
has been used and that incorporation of geopotential
heights or temperature in upper-atmospheric layers (also
large-scale fields) is likely to improve the results in the
validation period. However, the use of the geopotential
height for downscaling GCM information is more prob-
lematic, as explained in section 3. It is also suspected
(Hughes et al. 1993; Zorita et al. 1995) that the daily
rainfall process is not only conditioned by the large-
scale metereological fields but also by the local rainfall
in previous days, and this information is only indirectly
and not completely available to the net through the SLP
field in the previous days. But perhaps the biggest draw-
back is the difficulty to assign a physical interpretation
to the weights.

7. The problem of the level of simulated
variability

Some models presented here, for instance, the linear
models and neural networks, describe in general a partial
relationship between independent variables representing
the large-scale climate variability and dependent local
variables. The part of the local variables that remains
undescribed by the independent variables is normally
referred to as noise. From this point of view the ob-
served local variable at time tR(t) is one realization of
a stochastic variable R̃(t), with a probability distribution
P[F(t)] that depends on the simultaneous large-scale
forcing F(t).

The parameters of these models are usually fitted so
that in the mean the error between the estimated and
observed values is minimized, which means that the
fitted model yields the best estimation of the mean of
the probability distribution, E[P(F(t)] 5 P(F) , (in the
sense of smallest variance of the errors). We denote this
optimal fitted model by M and the best estimation of
P(F) by R̂(t). With this notation:

R̂(t) 5 M[F(t)]. (13)

However, the fitted model M is not optimized with
respect to the the variance of R̃(t). There are two con-
tributions to the variance of R̃(t): a local one,

Varlocal 5 E{[P(F) 2 P(F)]2}, (14)

caused generally by local processes and measurements
errors, and the variance forced externally by F:

Varexternal } E[(F 2 F)2], (15)

where we have assumed that the variability of the ex-
ternal forcing is independent of the internal variability.

When the statistical model is applied to an external
forcing simulated by a GCM or taken from the obser-
vations in a verification period, the variance of the sim-
ulated output is less than the observed variance. This
occurs because the variance of the simulated local var-
iable is caused only by the variance of the external
forcing Varexternal, and does not contain the internal con-
tribution to the variance of R̃(t). This is not important
if the aim of the model is just the estimation of changes
in the mean local climate, but it is really important if
the output of the statistical model is used to drive an
ecosystem or sector model. In this case the level and
structure of this noise may need to be addressed.

Some authors (Karl et al. 1990) have used inflated
regression coefficients in linear models to increase the
variance of the simulated output. However, in doing so
one is artificially enlarging the part of the variability of
the local variable that is driven by the large-scale forc-
ing. Another approach to this problem has been recently
proposed by Bürger (1996). According to this author
the step in the design of the downscaling model, namely,
the estimation of the model parameters by minimizing
the differences between the model response and the ob-
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FIG. 9. Daily rainfall (mm day21) time series at Cáceres, Spain in DJF in the years 1978–83 (first point is 1 Jan 1978, last 31 Dec 1983),
observed and simulated by the neural network and the analog method. The input for both models are the coefficients of the five leading
SLP EOFS in the current and two previous days. The coefficients of the neural net have been fitted in the winters between 1970 and 1975.

servations, is replaced by a constrained minimization
procedure. The simulated local variables are forced to
have the same covariance structure, and therefore the
same individual variances, as the local observations.
The price that has to be paid is that the fitting between
simulations and observations in the training period is
not as good as with an unconstrained minimization.
Therefore, the statistical model produces a simulated
output with the right level of local variability, but it is
less consistent with the large-scale forcing. One has to
find a compromise between both requirements that sure-
ly will depend on the particular application.

A more consistent way would be to acknowledge our
ignorance about the origin of this unexplained part of
the local variability and try to take it into account as
an additional and independent random component.
Therefore, for the purposes of obtaining estimates of
the local variable, for instance, to be subsequently used
as forcing for an ecosystem model, the estimation of
(13) could be replaced by a more useful estimation of
the local variable conditional on the external forcing:

R̂(t) 5 M[F(t)] 1 e, (16)

where e is a random noise. The level of variance of e
should be chosen in a way that the variance of the ob-
served and simulated local variables is the same. For
applications to perturbed climates, it has be to be as-
sumed that the local noise remains unchanged.

The design of the local noise e is straightforward for
a linear model with normally distributed variables. In

this case e can be simply a Gaussian noise with zero
mean and variance given by:

Var(e) 5 Var(R) 2 Var[M(F)]. (17)

In other words, the variance of e is the difference be-
tween the variance of the observed local variable and
the variance of the simulated response. For more com-
plicated cases, for instance, daily rainfall, it has to be
guaranteed that the simulated local rainfall is nonneg-
ative. Therefore e may depend in general on the esti-
mation M[F(t)].

These considerations do not apply to the methods
based on some sampling of a pool of observations, such
as the analog method or in general the classifications
methods. These techniques incorporate implicitly the
part of the variance that is not due to the large-scale
forcing, by choosing one observation that may be con-
sistent with the forcing, but that also contains one re-
alization of the local noise. Therefore the methods based
on sampling will yield in general a more uncertain es-
timation of the mean local variable (in the sense of larger
estimation variance), but provide at the same time a
more realistic variability.

8. Concluding remarks

A relatively simple statistical downscaling technique
based on the analog method has been presented and
applied to daily and monthly winter rainfall in the Ibe-
rian Peninsula. The relationship between the large-scale
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SLP field in the North Atlantic and Iberian rainfall was
already known (Lamb and Peppler 1987; von Storch et
al. 1993) and it represents a good example to test the
relative performance of statistical downscaling methods.
The use of monthly and daily rainfall allows for the
testing of the method in two different conditions, one
where the local variables are more or less normally dis-
tributed and one where they are clearly nonnormally
distributed. The analog method has been compared in
these two situations with more complicated statistical
downscaling techniques. These were taken to be rela-
tively complicated methods representing three different
families: linear methods (canonical correlation classi-
fication methods (classification and regression trees) and
neural networks.

It has been found that the analog method performs
quite satisfactorily when compared to the other methods.
When compared to the linear method based on canonical
correlation, it can be said that the performance of both
methods is very similar when applied to monthly rain-
fall, and also when both are applied to the statistics of
daily rainfall. The linear methods, however, offer the
advantage of a straightforward physical interpretation
of the spatial patterns obtained, thus increasing the de-
gree of confidence on the relationship between large-
scale and local variable. On the other hand the analog
method produces the right level of variability of the local
variable when driven by historical large-scale obser-
vations, and this point, which may be quite important
if the downscaled climate changes are used to drive an
ecosystem or hydrological model, is not guaranteed by
a linear method.

The analog method and the classification methods in
general automatically produce the right mean and var-
iance of the local variable (a purely random resampling
of the pool of historical observations would also be
succesful). The classification methods are not intended
to replicate exactly the observed realization of the local
variable, but just their statistical properties. Therefore
a comparison of both methods should be based in time-
evolution statistics, such as autocorrelation, or length of
dry periods. In this sense the CART method underes-
timates the persistence of dry days, also in other loca-
tions (Zorita et al. 1995), and the analog method behaves
somewhat better, although still underestimating this per-
sistence.

Neural networks are designed to be able to replicate
the observed local variables when they are driven by
the observed large-scale fields, once their internal pa-
rameters have been estimated. Therefore the comparison
with the analog method can be made on the basis of
daily rainfall time series, observed in an independent
period. In our example the neural network performed
worse than the analog method both in terms of coherent
evolution of observations and replication and in terms
of the level of replicated variability. This is somewhat
surprising since the analog method is technically by far
more simple than the neural network and it needs cer-

tainly much less computing time. Other more successful
applications of neural nets for the specification of local
rainfall from the large-scale circulation have been car-
ried out for monthly values (Hewitson and Crane 1992),
where a linear model may also produce good results.

The results of this study suggest that in the cases of
normally distributed variables, where linear methods
can be applied, they can provide a direct physical in-
terpretation and their output can be augmented to pro-
duce the right level of variability by adding stochastic
noise. In the nonlinear cases we have found that the
analog method is in general preferable to the others, due
to its technical simplicity and comparable or better per-
formance.
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