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ABSTRACT 

The principal oscillation pattern ( POP) analysis is a technique to empirically identify time-dependent spatial 
patterns in a multivariate time series of geophysical or other data. In order to investigate medium-scale and 
synoptic waves in the atmosphere it has been applied to tropospheric geopotential height fields of ECMWF 
analyses from 1984 to 1987. The data have been subjected to zonal Fourier decomposition and to time filtering 
so that variations with periods between 3 and 25 days were retained. Analyses have been performed separately 
for each zonal wavenumber 5-9 on the Northern Hemisphere in winter and on the Southern Hemisphere in 
summer (DJF). 

POPs can be seen as normal modes of a linear approximation to a more complex dynamical system. The 
system matrix is estimated from observations of nature. This concept is compared with conventional stability 
analysis where the system matrix of the linear system is derived from theoretical, in this case quasigeostrophic, 
reasoning. Only the mean basic flow depends on time- and space-averaged fields of observed wind and temperature 
from the ECMWF data. 

It turns out that the most significant POPs are very similar in time and spatial structure to the most unstable 
waves in the stability analysis. They describe the linear growth phase of baroclinic, unstable waves that propagate 
eastward with periods of 3-7 days. Since the POPs are purely derived from observations, the results indicate 
the appropriateness of the assumptions usually made in linear stability analysis of zonally symmetric flows to 
explain high-frequency atmospheric fluctuations. 

Moreover, the POP analysis reveals patterns that are not found in the linear stability analysis. These can 
possibly be attributed to the nonlinear decay phase ofbaroclinic waves. Eliassen-Palm cross sections help clarify 
the interpretation of the POPs in terms of the life cycle of nonlinear baroclinic waves. 

1. Introduction 

Medium-scale and synoptic waves (zonal wave­
numbers 4-9) are known to be responsible for much 
of the midlatitude atmospheric variability. In a series 
of papers, Fraedrich et al. (Fraedrich and Bottger 1978; 
Fraedrich and Kietzig 1983) applied space-time spec­
tral analyses to observations of tropospheric variables 
at selected latitudes in order to investigate the frequency 
distribution of progressive and retrogressive distur­
bances. Wavenumber-frequency contours of the power 
spectrum density at 50°N for wintertime geopotential 
height (Fig. 1; the symbols will be disclls.5ed later) show, 
for instance, that variance maxima are connected with 
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eastward-propagating waves of zonal wavenumbers 5-
9, with periods between 3 and 10 days. The maxima 
are well separated from a secondary maximum in the 
region of retrogressive waves (shaded region in Fig. 1 ) 
and are of about the same amount as maxima of the 
stationary variance in similar plots (not shown). How­
ever, the retrogressive and stationary variance maxima 
are confined to the low-frequency band, with periods 
above 10 days, and to wavenumbers 1-4. They are not 
an issue in this paper. 

Experiments with a hierarchy of models reaching 
from linear geostrophic to nonlinear primitive equation 
models with zonally symmetric or asymmetric flows 
in fJ channels or on a sphere (Charney 1947; Eady 
1949; Simmons and Hoskins 1976; Frederiksen 1982) 
have been performed with the intention of investigating 
the processes that cause this maximum in space-time 
spectra. They lead to the insight that the high-frequency 
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FIG. I. Power spectrum of geopotential height at 500 mb and 
50°N (one-sided frequency spectrum) . Contours show the propa­
gating variance ( average of five winters 1972/73-1976/77) ,  and the 
shaded region indicates westward progression. The symbols denote 
the periods of the POPs from the Northern Hemisphere POP analyses 
for zonal wavenumbers 5- 9 (section 4 ) .  Big squares are for the POPs 
that explain most of the variance for each wavenumber. [ Adapted 
from Fraedrich and Bottger ( 1 978 ) ] .  

characteristics of the circulation can b e  attributed to 
the generation of waves and cyclones as a result of the 
baroclinic instability of the mean climatological flow 
to small disturbances. The evolution of these pertur­
bations is governed by wave-zonal mean energy ex­
changes and exhibits a well-defined life cycle of linear 
baroclinic growth, maturity, and nonlinear barotropic 
decay. The latter stage is also influenced by wave-wave 
interactions. Both statistical investigations and case 
studies (Randel and Stanford 1985a, 1985b; Blackmon 
et al. l 984a, l 984b; Lim and Wallace 1991) were able 
to track this behavior in observations. The eastward 
progression is a more global feature in the Southern 
Hemisphere than it is in the Northern Hemisphere, 
where the waves are often confined to local storm-track 
regions due to land-sea contrasts. 

In the above-mentioned theoretical studies, the high­
frequency atmospheric transient fluctuations are often 
seen as being the normal modes of a dynamical system 
that has been derived from more or less severe simpli­
fications of the real world. The baroclinic linear stability 
analysis of zonally symmetric flows in a quasigeo­
strophic model has been especially historically useful 
in understanding midlatitude atmospheric circulation. 
Though nonlinearity and asymmetric basic states have 
been shown to contribute to the evolution of baroclin­
ically unstable waves, it is still of importance because 
the relatively simple computations allow for a variety 
of experiments. 

The purpose of this paper is to introduce the normal­
mode concept to the class of observational studies in 
this context by using the principal oscillation pattern 
(POP) analysis (Hasselmann 1988). This technique 
computes the normal modes of a linear dynamical sys­
tem on which noise is superimposed by considering a 
system matrix that is estimated from observations 
( von Storch et al. 1988). It is designed to empirically 
detect regularly oscillating patterns in multivariate time 
series and has so far been used in a number of studies 
that were primarily concerned with issues on longer 
time and space scales than is the case here ( von Storch 
et al. 1990; Xu 1990; Xu 1993). 

It will turn out that the POP analysis is a convenient 
method for extracting time-dependent patterns from 
observational data representing fluctuations in atmo­
spheric circulation on the time and spatial scales dis­
cussed above. Moreover, by analyzing the observations 
in a way that is analogous to the way the theoretical 
dynamics are analyzed (normal modes) the compari­
son between observations and theory is facilitated. 

The organization of this paper is as follows. In section 
2, a theoretical outline of the normal-mode concept is 
given. Section 2a introduces the principal oscillation 
pattern technique in this context. The analysis of the 
stability of a flow with respect to small disturbances is 
sketched in section 2b. Section 3 describes the data 
used and the respective steps that have been performed 
in the analyses. In section 4 the results for the Northern 
( 4a) and Southern hemispheres ( 4b) are presented in 
detail. All results are listed again in the Appendix in 
the form of two tables. Section 4 focuses on the com­
parison between the POPs and the baroclinic unstable 
waves in their linear growing phase. A connection be­
tween some additional POPs and the nonlinear baro­
tropic decay phase of unstable waves is hypothesized. 
This is substantiated in section 5 by means ofEliassen­
Palm cross sections. In section 6, the results are sum­
marized and discussed, and some remaining tasks are 
given. 

2. Analysis techniques: Normal modes 

Let 

X(t + 1) = AX (t) (1) 

be a discretized first-order linear Markov process inn­
dimensional space. The state vector X may be expanded 
in terms of the normal modes of this process, which 
are the eigenvectors P of the system matrix A. In most 
cases, these will form a complete set of n linearly in­
dependent vectors, so that X can be represented as a 
linear sum of the eigenvectors: 

(2) 

The quantity z1(t) is called the coefficient time series 
of mode P1. Note that since the eigenvectors need not 
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to be orthogonal, the coefficients Zj depend on all modes 
and not only on Pj. 

In general, matrix A is not symmetric and some or 
all of its eigenvalues u, eigenvectors P, and coefficients 
z are complex. However, since X and A are real, all 
complex quantities appear in complex-conjugate pairs. 

Equation ( 2) can be inserted into ( 1 ) yielding 

(3) 

which defines a damped ( I u I < 1 ) or growing ( I u I 
> 1 ) harmonic oscillation for the coefficient time series 
Zj , with a characteristic period � = 27r / Wj and an e­
folding time Tj = -1 /ln I <Ij I, derivable from the eigen­
value <Ij = I ujl exp(iwj). It follows that, apart from the 
damping/ growing, the dynamical evolution of the sys­
tem described by one normal mode P = P 1 + zP2, 
with period T, can be visualized by the following in­
finite cyclic sequence: 
... - p2 - pi - -p2 - -pi - p2 -

(4) 

A transition between two patterns in ( 4) is performed 
in one quarter of a period TI 4. 

So far, all relationships are based on the existence 
of a dynamical system ( 1 ) with a system matrix A. But, 
in most practical situations, what is lacking is exactly 
the knowledge of this matrix because the dynamics of 
the system of interest are not understood or are too 
complex. In the remainder of this section two different 
approaches of how to deal with this problem are de­
scribed. 

a. Principal oscillation patterns 

The first approach for determining an appropriate 
system matrix is a statistical one. It is based on the 
idea that although the dynamics of a system may be 
unknown, there is perhaps a set of observations avail­
able that describes the history of the system's state in 
some variables of interest. If it is assumed that the dy­
namics of a part of the system are governed by a linear 
operator and that the role of those parts, which are not 
covered by this operator, is just to act as background 
noise (or forcing), the following basic ansatz is ob­
tained: 

X (t + 1 ) = AX (t) + noise. ( 5) 

Equation ( 5) describes a first-order autoregressive pro­
cess ( von Storch et al. 1988). 

Let X be stationary with zero mean. If X and the 
noise are uncorrelated, then multiplication of ( 5) from 
the right-hand side by the transpose ofX {t), and taking 
expectation, E, leads to 

A= E[X(t + 1 )XT{t)]{ E[X(t)XT(t)]}-1, (6) 

which minimizes the noise term in ( 5) in the least­
squares sense. Since the true expectations in ( 6) for 
the stochastic process X are unknown, the lag-0 and 

lag-1 covariance matrices have to be estimated from 
observational data. 

The eigenvectors of ( 6), or the normal modes of 
(5), are called principal oscillation patterns (POPs). 
The time coefficients z{t) are called POP coefficients. 
Their time evolution is given by (omitting the index) 

z(t + 1) = uz(t) +noise, (7) 

which, in the absence of noise, defines a cycle ( 4) in 
terms of the real and imaginary part of a POP. Note 
that the stationarity of X requires I u I < 1. 

b. Linear stability analysis 

Sometimes, the dominant mechanisms in a system 
are known, and the dynamical equations may be writ­
ten as 

ax 
= L ( X ) + forcing terms, 

at 
(8) 

where L is some operator. However, often L will be 
nonlinear, and then ( 8) will be too complex to be solved 
analytically. A conventional approach to this difficulty 
is as follows. 

If, say, in the absence of forcing, ( 8) has an exact 
steady-state solution xs, then the investigation of the 
evolution of the state X is equivalent to the study of 
its deviations X ' ( t) from xs. Thus, after discretization, 
( 8) becomes an equation for X ', 

X'(t + 1) = LX' [X'{ t)], (9) 

with the operator L xs depending on XS. If it is now 
assumed that the perturbations X' are initially small, 
then ( 9) may be linearized, neglecting all X' terms of 
order higher than one. What is obtained is the system 
equation ( 1) for the perturbation state X ', with a matrix 
A depending on the basic state xs. The normal modes 
of this system may be computed as described above, 
and X' may be expanded as in ( 2). The vector of state 
may be restored by means ofX(t) = xs + X'(t). 

The time evolution of each mode is given by ( 3). 
The normal modes with eigenvalues I u I > 1 will grow 
in amplitude and will describe the instability of the 
basic state xs to small perturbations. The computation 
of the normal modes for different perturbations and 
subsequent analysis of their growth rates is known as 
linear stability analysis. The most unstable modes will 
emerge first from a background of small disturbances 
and will, thus, describe the major part of the underlying 
processes. Note that this concept is only valid as long 
as the amplitudes of the perturbations are small and 
that after some time of growth, nonlinear processes 
can no longer be ignored. 

The steady states xs are often replaced by other basic 
states. Experimenting with different arbitrarily pre­
scribed basic states may yield considerable insights into 
the dynamics of a system. In the atmospheric sciences 
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xs is also often taken to be a climatological basic state 
that is derived from observations. In this paper, too, 
the stability of such an observed basic state is consid­
ered. 

3. Data and analyses 

The data used in this study are taken from the Eu­
ropean Centre for Medium-Range Weather Forecasts 
(ECMWF) global analysis dataset, which consists of 
twice daily data for several atmospheric variables. The 
spatial resolution is 2.5° X 2.5° at the seven vertical 
levels 1000, 850, 700, 500, 300, 200, and 100 hPa. The 
time interval covered here is 1984-1987, during which 
the analyses are fairly stationary ( cf. Trenberth and 
Olson 1988). 

In an attempt to identify midlatitude baroclinic 
waves in the troposphere, a set of POP analyses and 
linear stability analyses have been performed on both 
hemispheres in northern winter, in the manner de­
scribed in the following. Since the signals are expected 
to propagate mostly in the zonal direction on top of a 
zonally symmetric mean flow, a semispectral represen­
tation is used by means of zonal Fourier decomposi­
tion. 

The variable analyzed with the POP method is the 
geopotential height <I> from the ECMWF data at the 
seven available levels. Since we are looking for high­
frequency signals, all data were first band-pass filtered 
so that only the anomalies on time scales between 3 
and 25 days were retained. Then, two datasets were 
formed: a Northern Hemisphere dataset ( 10°-85°N) 
and a Southern Hemisphere set ( 10°-85°S), both for 
the three northern winters (DJF) 1984/85-1986/87. 
These data were Fourier decomposed along each lati­
tude using the standard scheme 

<I>( A., 6, p) = 2: ck( 6, p) cos(kA) + sk( 6, p) sin(kA.), 
k 

( 10) 

where (A., 6, p) denotes (longitude, latitude, pressure), 
and k represents zonal wavenumber. In this study, only 
wavenumbers 5-9 are considered. The state vector Xk 
was then formed for each of these wavenumbers by 

Xk= [ck(6;,pj)] , Sk(6;,pj) 
. i,j 

(11) 

where 6; and pj denote the latitudes and pressure levels 
of the data grid (k = 5, · · · ,  9). 

The "spatial" dimension of the system for the given 
resolution is, thus, ( 31 latitudes X 7 levels X 2 Fourier 
coefficients) = 434. Since no reduction of the dimen­
sion of the problem is incorporated into the POP 
method itself, the data were subjected to a truncated 

EOF (empirical orthogonal functions) expansion prior 
to the analysis. The time series of vectors ( 11 ) was 
EOF expanded, and the vector of only the first 18 EOF 
coefficients was used as new time series. This retained 
more than 95% of the total variance of the data. A 
positive by-product of this procedure is to exclude noisy 
components from the analysis. Having done a POP 
analysis, the patterns are immediately restored back 
from EOF space to physical space, so the representation 
( 11 ) will always be used in this paper. 

Since X is formed by the cosine and sine coefficients 
of zonal geopotential waves, both the real and the 
imaginary parts of a POP P = P 1 + iP2 must be in­
terpreted as vectors of Fourier coefficients too. An am­
plitude-phase notation 

c(6, z) cos(kA.) + s(6, z) sin(kA.) 

= A(6, z) cos[kA. - 2:(6, z)] 

will be used to represent the patterns. Thus, P1 (P2) 
is represented by the latitude-height distribution of a 
phase 2:1 (2:2) and an amplitude A1 (A2). If P1 and 
P2 are 90° out of phase (i.e., a quarter of a wavelength), 
and if the amplitudes are nearly equal, the two patterns 
represent a zonally propagating wave according to the 
transition cycle ( 4). For the limiting case that one part 
has very small amplitudes compared to the other part, 
the POP approximates a standing wave. Note that since 
the structures of E 1 and E 2, as well as A 1 and A 2, may 
differ, ( 4) allows for a change of shape of the wave 
during its evolution cycle or for meridionally or ver­
tically meandering traveling waves. 

The linear stability analysis has been set up to be as 
similar to the POP analysis as possible. The starting 
point is the quasigeostrophic approximation to the po­
tential-vorticity equation for a stratified fluid on a 
hemisphere without topography that defines the op­
erator L in ( 8). No forcing or dissipation is included. 
The model has been described in Charney and Stern 
( 1962). Its vertical coordinate is geometric height, and 
the vertical extension of the model atmosphere is 0-
16 km, corresponding to an equivalent height of about 
1 OOO to 100 hPa (the highest level in the POP analyses). 

The model equation is linearized about a zonally 
symmetric basic state, and the perturbation stream­
function '11' is expanded as in ( 10) for zonal wavenum­
bers k. Discretization on a model grid with 1-km ver­
tical and 2° meridional resolution then leads to an 
equation ( 1) for each wavenumber and for the state 
vector Xk of cosine and sine coefficients 

Xk= [ck(6;,zj)l , Sk( 6;, Zj) 
• i,j 

(12) 

where 6; and Zj denote latitude and the geometric height 
of the model grid. The linear stability analysis then 
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consists of solving an eigenvalue-eigenvector equation 
for each wavenumber k = 5-9, as described in sec­
tion 2b. 

In this study, a climatological basic flow, as derived 
from ECMWF wind data from DJF 1984/85-1986/ 
87, is used as xs. The static stability parameter in the 
vorticity equation depends on the vertical profile of 

·horizontally averaged temperature. This is again taken 
from the ECMWF data as the mean over the same 
three winters for which the POP analyses were carried 
out and interpolated to the model grid. On the upper 
and lower boundary, a zero vertical perturbation wind 
is prescribed. The model is formulated for each hemi­
sphere, with the boundary condition of zero stream­
function at the equator and at the poles. 

The zonal waves corresponding to the most unstable 
modes Q = Q 1 + iQ2 will be considered. As described 
above, Q 1 and Q2 can be represented in an amplitude­
phase notation and evolve according to cycle ( 4). 
However, since the system matrix A only depends on 
a zonally averaged basic state, the normal modes must 
be invariant against zonal displacements. Therefore, 
Q 1 and Q2 coincide, except for a phase difference of 
90°, so that Q represents a pure, zonally propagating 
pattern. This was not the case in the POP analysis, 
since the matrix A was of general form, and the ob­
servation data satisfy, of course, no such invariance 
condition. 

Note that the above-described formulation of the 
stability problem is equivalent to the usual use of the 
perturbation streamfunction 

X'(A., 8, z, t) = Re[Xk((J, z) exp(ikA. - iwt)] , 

with (real) wavenumber k and (complex) frequency 
w. The latter can be directly written in terms of the 
growth rate and the period used in section 2. In fact, 
this is the formulation that has actually been used in 
this work. 

Due to the notion of zonal Fourier decomposition 
for single wavenumbers, a natural limitation of the two 
methods used in this study is as follows. Since the 
wavelength for a specific zonal wavenumber is shorter 
in higher latitudes than in lower ones, the zonal scale 
of POP patterns or unstable modes must decrease with 
increasing distance from the equator. Moreover, the 
Fourier coefficients describe global patterns around 
whole latitude circles. Thus, it is not possible to identify 
regional patterns or patterns with features of equal scale 
in well-separated latitude bands as, for example, the 
Pacific-North America (PNA) pattern. 

4. Results 

The results of the above-described POP analyses and 
linear stability analyses are given first for the Northern 
Hemisphere (section 4a). After presenting a general 
overview for all wavenumbers, attention is drawn to 
wavenumber 8, as an example. The structure of the 

patterns is given in detail for this case. The Southern 
Hemisphere is treated in subsection 4b. A listing of all 
POPs that were found to be significant and corre­
sponding unstable eigenmodes is given in the Appendix 
for reference. 

a. Northern Hemisphere 

In Fig. 2, three characteristic numbers resulting from 
a POP analysis are shown for the wavenumber k = 5-
9 analyses of the Northern Hemisphere geopotential 
height fields. The bars in Fig. 2a denote the explained 
variances for the POPs that are found to be most sig­
nificant. For each POP P, this quantity is the percent­
age of wavenumber k variance that is accounted for 
by P, together with its coefficient time series z(t), av­
eraged over space. In almost all cases a POP will be 
considered significant if it explains at least 5% of the 
total variability that is caused by waves of the respective 
wavenumber (see also Appendix). Since, in this study, 
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FIG. 2. POP analyses of twice-daily geopotential height in the 
Northern Hemisphere for the three winters DJF 1984/85-1986/87 
and for zonal wavenumbers 5-9. Shown are the (a) explained vari­
ances and (b)  the periods and e-folding times of the respective POPs. 
The numbering of the POPs in the text refers to the ordering with 
respect to decreasing explained variances for each wavenumber. 
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each POP analysis only uses the data of the particular 
wavenumber under consideration, this number is only 
a measure of the significance of the POPs in each single 
analysis. It does not say anything about the relative 
importance of POPs for different wavenumbers. Also 
note that unlike the explained variances ofEOFs, these 
quantities are not additive because POPs are not nec­
essarily (statistically) orthogonal. The ordering of the 
POPs for each wavenumber will be used throughout 
the paper and refers to the explained variance as a 
measure of significance. In Fig. 2b the POPs are 
grouped together for each wavenumber, displaying the 
oscillation period (dark shaded bars) and the e-folding 
time (light shaded bars). 

It can be seen that the explained variances range 
from about 10% to 45%, the signals getting clearer with 
increasing wavenumber. On the whole, the periods lie 
between 4 and 8 days. For some of the POPs, the e­
folding time is two times a period, which means that 
the patterns can perform two oscillation cycles ( 4) be­
fore being damped with a factor of 1 /e. For the other 
POPs, the oscillations can be seen for at least half of a 
period before they are e-folded. 

The periods of the POPs are in good accordance 
with the findings of other studies. In the Introduction, 
the space-time power spectrum of a five-winter geo­
potential height field in the Northern Hemisphere was 
shown. If the POP periods are inserted into this plot 
(Fig. 1 ), it can be seen that the POPs reflect the vari­
ability of the atmospheric circulation in this wave­
number range. The picture at least shows fairly good 
agreement with the relationship between the space and 
time scale found in Fraedrich and Bottger's study. The 
variances of the coefficient time series associated with 
the POPs (not shown) indicate how the power is dis­
tributed over the different wavenumbers. They are also 
in agreement with the position of the power maxima 
at wavenumbers 5 and 6 in Fig. 1. 

It should be stressed that the explained variance is 
only to be understood as a measure of significance in 
a nonstatistical sense. Since a POP analysis is multi­
variate, there is no formalism at hand to state, in a 
probabilistically strict sense, a hypothesis about the 
POP patterns that could be tested for significance. If 
the time series is long enough we could instead derive 
the POPs for disjoint independent subsets. If each of 
these analyses yields POPs with similar characteristics 
and spatial structures, then the corresponding POP of 
the original analysis may be assumed to describe some 
"real" phenomenon that is worth interpreting. As an 
example, a POP analysis has been carried out separately 
for each of the three winters, in the case for wavenum­
ber 8 and in the Northern Hemisphere. The results 
were indeed fairly similar to those discussed in this 
paper. 

Figure 3 summarizes the normal modes of the linear 
stability analysis. The growth rate of the most unstable 
modes (Fig. 3a, left bar in each group) increases from 
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FIG. 3. Linear stability analyses for zonal wavenumbers 5- 9 of the 
discretized quasigeostrophic vorticity equation linearized about a cli­
matological zonally symmetric basic state from three winter (DJF 
1 984 / 85-1 986 / 87) wind fields in the Northern Hemisphere. Shown 
are (a) the growth rates and ( b )  periods of the three most unstable 
waves. The right axis in (a) expresses the growth rate in terms of e­
folding time. 

its smallest value at wavenumber 5 to a maximum of 
0.45 for wavenumber 8, which means that the ampli­
tude of an initial wavenumber 8 disturbance has grown 
by a factor of e after about 2 days. The growth is almost 
constant for wavenumbers 7-9. The periods of these 
modes (Fig. 3b, left bars) have values between 3.5 and 
6.5 days, with decreasing periods for smaller wave­
lengths. The characteristic numbers for the second­
most and the third-most unstable normal modes are 
also shown in the diagram. 

Note that the predominant waves predicted by linear 
instability theory on the basis of growth rate are wave­
numbers 7-9, whereas the wave power maxima in the 
atmosphere occurs at wavenumbers 5 and 6 (Fig. 1 ). 
In two papers, Gall ( 1976a,b) suggests several nonlinear 
processes that are absent in the stability analysis and 
may be responsible for this discrepancy in zonal-scale 
selection. Interaction between a growing wave and the 
zonal flow leads to a decrease of the vertical shear of 
the zonal wind and an increase of the zonal-mean static 
stability, especially in the lower troposphere. Therefore, 
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the most rapid decrease of growth occurs at lower levels 
and, consequently, the long waves can reach greater 
amplitudes than short waves do. Another reason may 
be wave-wave interactions that lead to an energy cas­
cade from small scales to larger scales. Also, surface 
friction is more effective in slowing down the growth 
of short waves than long waves. 

The purpose of this paper is, besides describing the 
application of the POP analysis to tropospheric waves 
itself, to compare an empirical and a theoretical ap­
proach to the determination of the normal modes of 
the atmosphere. This has already been mentioned in 
the Introduction. A first indication that this may be a 
promising task is given by the comparison of the pe­
riods of POPs and unstable waves. Figure 4 jointly dis­
plays for each wavenumber the periods of the three 
most unstable waves from the stability analysis and the 
three most significant POPs. It can be seen that in quite 
a few cases the periods of an unstable mode and a POP 
are located very close to each other so that both analyses 
possibly yield the same waves. 

This must, of course, be verified by investigating the 
spatial structure of the modes, and by other diagnostics. 
As an example, most of the further treatment will 
be given in detail for wavenumber 8. Information on 
the other wavenumbers will be provided where ap­
propriate. 

Figure 5 shows the phase (upper row) and amplitude 
(lower row) structure of POP 1 in four latitude-height 
diagrams. This POP explains 35% of the total wave­
number 8 variance. In the whole region, the amplitudes 
of the real (left column) and imaginary (right column) 
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FIG. 4. Periods of the first three POPs ( squares; only two for wave­
number 5) and the three most unstable normal modes (diamonds) 
from the Northern Hemisphere analyses plotted against zonal wave­
numbers 5-9. 

part are almost equal, with maximum values in the 
upper troposphere and at 45°N. A small secondary 
maximum is indicated at the bottom. In the region of 
significant amplitudes, the phases of both parts have a 
very similar distribution and are shifted by about 90°, 
with the imaginary part being west of the real part. 
Together with the POP cycle ( 4 ), this gives the picture 
of a pattern propagating in the eastward direction. In 
order for this conception to be valid, it is also required 
that the real and imaginary parts of the corresponding 
complex coefficient time series be out of phase by a 
quarter of a period. This has been verified by computing 
the cross spectrum of both parts (not shown), yielding 
maximum power and a phase shift of 90° at the POP 
period of 4 days. The coherence is above the 99% con­
fidence limit. 

The phases in Fig. 5 tilt westward, with a phase dif­
ference of about 50° (corresponding to 50/8° longi­
tude) between the surface and 300 hPa. Above 300 
hPa, the phase is nearly constant. There is only a small 
dependence of the phase with latitude, indicating no 
meridional momentum transport; the lines of constant 
phase are only slightly curved at upper levels. This hor­
izontal structure and its eastward propagation is more 
visible in cross sections of the Fourier-reconstructed 
wave in the 200-hPa level (Fig. 6). 

The most unstable mode resulting from the linear 
stability analysis for wavenumber 8 is plotted in Fig. 
7. As has already been mentioned in section 3, only 
one pattern needs to be shown since the analysis is 
restricted to longitudinally independent features. The 
vertical phase gradient in midlatitudes and the position 
of the amplitude maximum in the upper troposphere 
are in good coincidence with POP 1. A striking differ­
ence is the large-amplitude maximum of the unstable 
mode at the bottom. Similar structures were found in 
unstable modes found by Valdes and Hoskins ( 1988). 
However, when they included frictional effects at the 
bottom in their linearized primitive equation model 
by means of Ekman pumping, this lower maximum 
disappeared. So it can be assumed that bottom friction 
would also bring the vertical profile of the unstable 
mode in our calculation closer to that of the POP. Also, 
nonlinear effects that influence the POP via the obser­
vation data may be suitable to explain this difference. 
Simmons and Hoskins ( 1976) showed unstable prim­
itive equation modes that were very similar in structure 
to the above modes. In particular, the slight meridional 
phase curvature seen in the POP matched very well. 

Thus, it can be stated that both the most significant 
POP and the fastest growing normal mode describe the 
same atmospheric oscillation, and the POP can be at­
tributed to the genesis of baroclinic waves due to the 
instability of the basic flow. 

POPs with structures similar to the wavenumber 8 
POP that was just described are found for almost all 
wavenumbers. We have also found some POPs with a 
typical amplitude-phase structure that are only con-
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fined to selected wavenumbers. For waves 6 and 9, 
POPs are found with a phase tilt in the southeast­
northwest direction, especially at lower levels. Their 
region of maximum amplitudes at upper levels is di-

vided into a primary and a smaller secondary maxi­
mum. The 500-hPa cross section of POP 3 for wave­
number 6 (Fig. 8) clearly shows this horizontal phase 
and amplitude relationship with a strong meridional 

180W 120W sow 0 SOE 120E 180E 

SON 

SON 

40N 

20N 

180E 

SON 

60N 

40N 

20N 
T""�.,,,.._�..,__,._-T'"'-""-"r--"-..-""---,->.....:....-"r--=""-.--''-'-+""'-'-..,.,..--'....,..-"--+ 

180W 120W SOW 0 50E 

Longitude 
120E 180E 
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by the sequence . . .  -+ imag-+ real-+ -imag-+ -real-+ imag-+ . . . .  The absolute values of 
the contour lines are again arbitrary. 
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momentum transport. But there is also a mode from 
the linear stability analysis corresponding to this POP 
with respect to phase velocity and three-dimensional 

180W 120W sow 
Cl.> SON 

"g SON 
.... 
� 40N 
...... 

20N 

180W 120W sow 

180W 120W sow 

0 

0 

0 

structure (Fig. 9). Thus, the POP analysis is also able 
to identify unstable modes that play a totally different 
role in the process of instability. A similar relationship 
can be established for POP 1, and the third most un­
stable mode fork= 7, as well as POP 2 and the second 
most unstable mode for k= 9, which are characterized 
by a distinct dipole structure in lower levels. 

In addition to the above-described modes, the POP 
analyses also yield patterns that explain some variance, 
which are not found in the linear stability analysis. 
POP 3 for wavenumber 8 is an example (Fig. 10). It 
has a period of 4.3 days and a decay time of 5 days 
with an explained variance of 6.4%. The amplitude 
distributions of the real and imaginary parts are again 
very similar, with a broad maximum in the upper tro­
posphere and greatest values at 35 °N. The patterns are 
90° out of phase. In the vertical, the wave has only a 
slight westward tilt, but there is a strong meridional 
phase gradient resulting in a southwest-northeast-tilted 
wave. This POP is reminiscent of the latitudinal struc­
ture of baroclinic waves in their nonlinear decay phase, 
which were identified by Hoskins and Simmons ( 1978) 
with a primitive equation model. They are character­
ized by a strong northward transport of momentum 
that corresponds to a distinct Rossby wave dispersion. 
POP 3, k = 7, and POP 2, k = 8 have a similar am­
plitude structure but, besides having only small vertical 
phase tilt, phases are also almost constant with latitude 
where amplitudes are significant. This nearly constant 
phase in the meridional plane means that there is no 
meridional transport of both momentum and heat. 
These patterns could characterize the end phase in the 
life cycle of baroclinic waves. 

As a result of these findings, section 5 has as its sub­
ject the interpretation of the POPs in terms of the life 
cycle of baroclinic waves. But before proceeding to this 
point, the Southern Hemisphere is treated first. 
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FIG. 8. As in Fig. 6 but for the 500-hPa cross section of the wavenumber 6 POP that explains 
the third-most of the wavenumber 6 variance. The oscillation period is 6. 1  days, and the e-folding 
time is 4.3 days. 
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FIG. 9. As in Fig. 7 but for the third-most unstable mode of the 
wavenumber 6 stability analysis. The growth rate is 4.7 days, and 
the oscillation period is 5. 7 days. 

b. Southern Hemisphere 

The results for the DJF Southern Hemisphere are 
summarized here and are described to the extent to 
which they differ from what has been shown so far. 

Figure 11 displays the characteristic numbers for the 
POP analyses and should be compared to Fig. 2. The 
first thing that can be noticed is that there are more 
POPs that are found to be significant than in the 
Northern Hemisphere. Their explained variances are 
generally higher, although the peak value of 45% for 
wavenumber 9 in the NH is not reached. Also, the 
damping times are considerably larger in the Southern 
Hemisphere, indicating that the waves are retaining 
their amplitude longer than NH waves do. These facts 
may be an indication for the well-known observation 
that transient features in the Southern Hemisphere tend 
to be longitudinally more global than in the NH. In 
the NH they are often confined to local storm-track 
areas. This behavior, in tum, matches the analysis 
techniques in this study, namely, the assumption of 
zonal symmetry and the restriction of the analyses to 
zonal wavenumber space. As a consequence, the signals 
are easier to detect for the POP analysis and fit better 
to the POP model in the SH than in NH. The periods 
of the POPs are very similar to that of the NH POPs 
and fall again into the band between 4 and 7 days. The 
variances of the coefficient time series of the POPs in­
dicate maximum power at wavenumbers 6 and 7, 
whereas the contribution of wavenumbers 8 and 9 is 
fairly small. 

Figure 12 shows the periods and growth rates of the 
three most unstable waves of the SH linear stability 
analysis. Most periods are again around four days. 
Compared to Fig. 3, the growth curve for the most 
unstable modes has a more distinct maximum at 
wavenumber 8, and the modes generally grow more 
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slowly than in the Northern Hemisphere. This reduced 
instability is related to the differences in the strength 
and structure of the NH and SH mean zonal winds 
used in the stability analysis. The comparison between 
the greater e-folding times and the smaller growth rates 
in the SH analyses shows that POP e-folding times are 
not necessarily a measure of how unstable a flow is. 
We will come back to this point in the discussion sec­
tion (section 6). 

The comparison of POP periods with the periods 
for the most unstable modes again indicates a good 
correspondence between the two methods. Though not 
shown, this correspondence has been confirmed by 
considering diagrams of spatial structure in the same 
manner as described above (see also section 5). Only 
for wavenumber 9 does the stability analysis yield no 
modes that can be identified with POPs. But for this 
wavenumber the growth rates are generally very small, 
so that waves of this scale are not preferred by the in­
stability process in the theoretical model. In the SH 
the POP analyses identify modes with northwest­
southeast phase tilt (instead of southwest-northeast in 
the NH) that can be attributed to the decay phase of 
baroclinic waves. This tilt corresponds to a poleward 
momentum flux in the Southern Hemisphere. Modes 
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with an equatorward momentum flux, that is, south­
west-northeast phase tilt, which were found in the 
Northern Hemisphere, are not present in the Southern 
Hemisphere, either in the stability analysis or in the 
POP analysis. 

5. Life cycle of baroclinic waves 

A valuable tool for investigating disturbances on top 
of a zonal mean flow are Eliassen-Palm (EP) cross 
sections that jointly display the Eliassen-Palm flux 
vector and its divergence in latitude-height diagrams. 

The Eliassen-Palm flux is a vector 

F = F(O, z) = (Fo, Fz) 

in the meridional plane ( 6, z), where F0 is the negative 
of the northward flux of eastward momentum, and F z 
is the northward flux of heat. Since each POP pattern 
corresponds to geopotential height, it is straightforward 
to compute the EP fluxes of the POPs in a quasigeo­
strophic framework (Grieger and Schmitz 1984). 

Plots of the arrows defined by F show the wave en­
ergy propagation from one latitude and height to an­
other and the relative magnitudes of meridional heat 
and momentum fluxes. Contours of the EP flux di­
vergence V · F describe the meridional flux of potential 
vorticity and the net propagation of wave activity. They 
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also represent the wave-zonal flow interaction. Nega­
tive divergence, that is, convergence, of the EP flux 
means that the zonal flow is decelerating and feeding 
energy into the disturbance (neglecting the contribution 
of a residual meridional circulation). A detailed review 
of the dynamical information contained in EP dia­
grams is given by Edman et al. ( 1980). 

Following Randel and Stanford ( 1985b), the evo­
lution of baroclinic waves during their life cycle is con­
nected with typical changes in the EP cross section. A 
strong meridional gradient of zonal-mean temperature 
at low levels allows for the transfer of energy from the 
basic flow into a growing wave. In terms of the EP flux 
vectors, this shows up as large arrows in the lower tro­
posphere, which are directed upwards. During the lin­
ear growing phase, this poleward heat flux is connected 
with a vertical propagation of wave activity from the 
surface into the middle troposphere and results in a 
convergence of the EP flux vectors in the mid-to-upper 
troposphere. 

At wave maturity, the heat flux is distributed over 
the whole troposphere, resulting in a smaller growth 
rate and convergence in the upper region. Following 
this stage, the heat flux lessens at the lower levels and 
the direction of wave activity propagation turns equa­
torwards in the upper troposphere. This quasi-hori­
zontal wave propagation from midlatitudes toward 
the subtropics is accompanied by strong, poleward, 
momentum fluxes at upper levels. The wave is in its 
phase of barotropic decay. This stage is associated with 
an extension of the region of divergent EP flux to the 
lower-to-middle troposphere and an upper region of 
strong convergence that is located more equatorward 
than initially. 

The results of the POP analyses and the linear sta­
bility analyses can now be interpreted in terms of the 
above-described life cycle of baroclinic unstable waves 
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FIG. 1 3. Eliassen- Palm diagram for the real part of the PO P, which 
is shown in Fig. 5. The vertical coordinate is geometric height as 
used in the linear stability analysis, and the pressure levels used in 
the PO P analysis are inserted at the right axis. Regions of positive 
divergence are shaded. The Eliassen- Palm flux ( arrows) is in units 
of (m3 s-2, m3 s-2) ,  and it's divergence (contours) is in units of 
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pattern is arbitrary. 
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FIG. 14. As in Fig. 1 3  but for the PO P shown in Fig. 10. 

by means ofEP cross sections. As an example we focus 
again on the wavenumber 8 of the Northern Hemi­
sphere analyses. 

The EP diagram for POP 1 of the wavenumber 8 
analysis (Fig. 13) shows the features of the linear grow­
ing phase well and, thus, confirms the previously given 
interpretation of this POP. The lack of meridional mo­
mentum transport, as indicated by the weak, first com­
ponent F8 of the EP flux vector, has already been noted 
in section 4a (Fig. 6). The upward-directed arrows at 
the lower levels show that northward heat flux F z and 
the vertically propagating wave activity are the primary 
mechanisms connected with this mode. There is an EP 
flux divergence at lowest levels and a convergence at 
mid-to-upper levels in midlatitudes. This is consistent 
with a baroclinic energy conversion from the basic flow 
to the disturbance that is, thus, growing. 

Note that it is only necessary to consider the EP 
diagram of, say, the real part of a POP because both 
parts are very similar, except for a zonal shift and the 
fact that only zonally averaged quantities enter the EP 
flux. 

Not unexpectedly, the EP diagram for the most un­
stable mode of the stability analysis for wavenumber 
8 (not shown) is similar to Fig. 13. 

The EP diagram of POP 3 for wavenumber 8 is pre­
sented in Fig. 14. The dominating feature is the distinct 
equatorward tilt of the arrows, especially in the upper 
troposphere. Thus, there is a strong equatorward wave­
activity flux at upper levels. Poleward momentum 
fluxes are important for this mode and have already 
showed up in the spatial structure of this POP as a 
horizontal southwest-northeast tilt (Fig. 10). The re­
gion of strong EP flux convergence is concentrated in 
the mid-to-upper troposphere and has shifted equa­
torward, compared to POP 1. 

These features are all in very good qualitative agree­
ment with the characteristic behavior of unstable waves 
in their decay phase, as observed by Randel and Stan­
ford (1985a,b). Thus, the structure of the EP cross 
section substantiates the conjecture made at the end 
of section 4a and identifies POP 3 with the barotropic 
decay phase of a baroclinically unstable wave. 

For almost all wavenumbers of the NH and SH POP 
analyses, similar relationships can be established (see 
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Appendix). The POP analysis is, th�s, able to extra�t 
patterns that can be attributed to different phases m 
the life cycle of baroclinic unstable waves. 

6. Summary and discussion 

In this paper, medium-scale traveling waves in the 
atmosphere have been considered normal modes of a 
linear dynamical system. The system has been for­
mulated in a · semispectral representation, and only 
waves of zonal wavenumbers 5-9 have been consid­
ered. The system matrix of this linear system has been 
obtained in two conceptually different ways. In one 
case it was estimated from observation data of three 
winter (summer, respectively) seasons (POP analysis) 
and in the other case it was derived theoretically from 
the quasigeostrophic equations, making assumpti

.
o
.
ns 

on the smallness of the disturbances (linear stabihty 
analysis). 

The most unstable waves resulting from the stability 
analysis can be found in the POP analysis, too. Also, 
some modes with smaller growth rates have corre­
sponding POPs. The respective waves coincide very 
well with respect to the oscillation period and three­
dimensional structure. Thus, these POPs can be inter­
preted as baroclinic waves in their linear growing phase. 
The results show a very nice equivalence between the 
two approaches used, namely, the empirical met�od 
that uses atmospheric observations and the theoretical 
method that uses first-order dynamical reasoning. Since 
the POPs result from an observational analysis, in a 
way this coincidence also shows the appropriateness of 
the severe simplifications used in the conventional sta­
bility analysis in order to investigate waves in the at­
mosphere. 

At this point a slight inconsistency between the two 
analysis techniques should be mentioned that refer� to 
damping times and growth rates. Under the assumption 
of a stationary data time series, a POP analysis always 
gets damped POPs with corresponding eigenvalues j u j 
< 1 because any eigenvalue with I u I > 1 would char­
acterize an exploding solution of ( 3 ) .  By estimating 
the matrix A of the linear system ( 1 ) from the data, 
the POP analysis of a particular zonal wavenumber 
preferentially "sees" an oscillation when it is fully ?e­
veloped, with noise relatively small, and when dampmg 
occurs because of nonlinear and other processes. In the 
stability analysis the system matrix A is derived from 
a linearization of a nonlinear dynamical equation, 
where a small perturbation is superimposed on a basic 
state. This system contains the potential of amplifying 
solutions and, actually, these are the solutions we are 
interested in. In this case, eigenvalues with I u I � 1 
describe the formation and growing of oscillations, 
which the POP analysis eventually detects. 

The POP analysis also reveals waves that are not 
found in the linear stability analysis. Their spatial 
structure and wave energetics are reminiscent of the 
nonlinear decay phase of baroclinic waves. Using the 
notion of the instability of a basic flow, this stage can 

only be described by integrating more complex (non­
linear) models in time. However, as Simmons and 
Hoskins ( 1 978 ) have shown, nonlinearity is mainly 
important from the point where the linear growth of 
a wave comes to an end and the barotropic decay be­
gins. The evolution of the wave in an up�er level, �al­
lowing this transition point, can be approximated f�rly 
well by quasi-horizontal Rossby wave propagat10n 
mechanisms. This may be a reason that the linear 
method of POP analysis can also describe this phase, 
although nonlinear mechanisms play a role. 

Thus, the POP analysis has proven to be an easy-to­
use method to extract zonally propagating midlatitude 
waves from observational data. However, the limitation 
to zonal wavenumber space that has been made restricts 
the method to representing only regularly developing 
waves of a longitudinally global nature. Although the 
results are reasonable, this is not really the behavior of 
the atmosphere. Especially in the Northern Hemi­
sphere, the variability is confined to local storm

. 
track 

areas which means that waves have large amplitudes 
only in certain bands of longitude. In view of this, the 
patterns presented in this study for the Northern 
Hemisphere have to be understood as being valid �nly 
in certain regions and as being damped out after a time 
of propagation. 

In order to better account for the facts we have de­
scribed, it would be necessary to consider wave packets 
in the POP analysis instead of single zonal wavenum­
bers or to do the analysis in spherical harmonics space. 
This would also yield information about the degree to 
which the different wavenumbers are responsible for 
the total variability. 

It can also be expected that the above extensions 
would be able to better represent the growth and decay 
of baroclinic waves. Since the waves have big ampli­
tudes in preferred regions, the growth will occur at cer­
tain longitudes and the decay will happen at others. 
For each stage, the corresponding complex POP p�tte� 
could have for example, an imaginary part with its 
maximum �mplitudes in the region of the genesis of 
the wave and a real part with greater amplitudes east 
of this. Since the real part describes the wave a quarter 
of a period after the imaginary component is valid, this 
would describe the actual growth of the wave and 
would, thus, solve the above-mentioned inconsistency 
between POP analysis and stability analysis. 

Eventually, by looking at the coefficient �ime seri�s 
of these POPs, it should be possible to descnbe certam 
cases of the life cycle of baroclinic waves in observa­
tional fields or model results. We have made a prelim­
inary attempt in this direction by starting from t�e 
trivial fact that the decay of a wave takes place a certam 
time after its growth, but no clear correlation (lagged) 
has been established between the coefficient time series 
of the "growing phase" and the "decay phase" POPs. 
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APPENDIX 

Results of Section 4 

Tables A l  and A2 list all significant POPs in terms 
of their characteristic numbers-e-folding time, oscil­
lation period, and explained variance-for the North­
ern and Southern hemispheres, respectively. In this pa­
per, significance of a POP has always been measured 
in terms of the explained variance as well as the or­
dering within each wavenumber that refers to this 
number. It should be noted, however, that this number 
is not the only criterion upon which useful POPs are 
chosen from the totality of modes of a POP analysis. 
Additional information that aids the assessment of the 
results can, for example, be obtained by looking at the 
e-folding times, the coefficient time series ( cross-spec­
tral analysis), and plots of the patterns. 

A class name is assigned to each POP in the tables 
according to the different three-dimensional structures 

described in section 4. Most important is class A, which 
describes the modes being attributed to the linear 
growing phase of unstable baroclinic waves, and class 
B, which corresponds to the decay phase. The classes 
are characterized by the following structure of the pat­
terns: 

Class A-one amplitude maximum in midlatitudes 
and the upper troposphere; vertical westward phase tilt 
from the bottom to 500-300 hPa in the region of sig­
nifi�ant amplitudes, nearly constant phase above that 
level; little dependence of phase with latitude, lines of 
constant phase are only slightly curved. 

Class B-a broad amplitude maximum in the upper 
levels sometimes showing up as a double maximum; 
westward phase tilt with height; strong meridional 
phase tilt in southwest-northeast (Northern Hemi­
sphere) or northwest-southeast (Southern Hemi­
sphere) direction, especially at upper levels. 

Class C-amplitudes as in B; almost constant phase 
in the region of large amplitudes; 

Class D-double amplitude maximum; meridional 
phase tilt in northwest-southeast (Northern Hemi­
sphere) or southwest-northeast (Southern Hemi­
sphere) direction, especially at lower levels. 

Class E-distinct dipole structure of both amplitude 
and phase distribution, especially at lower levels. 

Small departures from these structures might, of 
course, happen. In classifying the patterns, reference 
has also been made to the Eliassen-Palm cross sections 
that are typically connected with the different struc-

TABLE A I. POPs and unstable normal modes in the Northern Hemisphere for zonal wavenumbers 5-9. The number (No.) of a POP 
refers to its position among all POPs of an analysis for a particular wavenumber in terms of decreasing explained variance. The same is 
true for the unstable modes but with respect to decreasing growth rate. The "growth" of an unstable mode (second column from the right) 
is the inverse of the growth rate, that is the time after which an initial disturbance has grown by a factor of e. POPs and unstable modes 
that are printed on one line have a similar period and a structure that is described by the classes A-E. The e-folding times, growth, and 
periods are given in days, explained by variance in percent. 

POP analysis Unstable waves 

e-folding Explained 
Wavenumber No. time Period variance Class No. Growth Period 

5 1 6.6 7.2 8. 1 B 
2 6.2 5.5 2.0 A 3.7 6.6 

6 1 8.3 4.7 1 8.3 B 
2 5.2 4.9 JO. I A I 2.7 5.5 
3 4.3 6. 1 5.9 D 3 4.7 5.7 

7 A 1 2.3 4.5 
1 4.7 5.3 1 3.2 E 3 4.6 4.9 
2 7.5 4.5 1 0.8 B 
3 4.8 9.5 1 0.3 c 

8 1 8. 1 4.0 34.7 A 2.2 3.9 
2 4.9 8.0 6.8 c 
3 5.0 4.4 6.4 B 

E 3 4.7 4.3 

9 1 7.8 3.6 45. 1 A 1 2.3 3.4 
2 4.2 4.3 1 2.2 E-D 2 5. 1 3.9 
3 4.0 8.0 6.0 B 
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TABLE A2. As i n  Table 1 but for the Southern Hemisphere. 

POP analysis 

e-folding 
Wavenumber No. time Period 

5 1 8.4 4.7 
2 7.6 5.3 

6 1 7.0 5.6 
2 8.6 4.2 
3 5.3 5.6 
4 5.9 8.7 
5 7.3 4.6 

7 I 1 1 .4 3.4 
2 7.4 4.0 
3 5.7 4.7 
4 5.4 6.8 

8 1 10. 1  3.4 
2 5 . 1  7.4 
3 4.5 5.4 
4 5.0 4.4 

9 1 6.9 3.5 
2 5.7 5.4 
3 5.0 9.2 

tures. The rightmost columns of Tables A l  and A2 list 
the most unstable modes from the linear stability anal­
yses that approximately fall in one of the above classes. 
They are numbered in terms of their growth rates. POPs 
and unstable modes that describe the same feature are 
printed on one line. This correspondence has been 
evaluated from the periods, the three-dimensional 
structures, and the Eliassen-Palm cross sections. 
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