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[1] In this paper, we compare the retained and added variability obtained using the
regional climate model CLM (Climate version of the Local Model of the German Weather
Service) to an earlier study using the RAMS (Regional Atmospheric Modeling System)
model. Both models yield similar results for their standard configurations with a
commonly used nudging technique applied to the driving model fields. Significantly both
models do not adequately retain the large-scale variability in total kinetic energy with
results poorer on a larger grid domain. Additional experiments with interior nudging,
however, permit the retention of large-scale values for both models. The spectral nudging
technique permits more added variability at smaller scales than a four-dimensional
internal grid nudging on large domains. We also confirmed that dynamic downscaling
does not retain (or increase) simulation skill of the large-scale fields over and beyond that
which exists in the larger-scale model or reanalysis. Our conclusions should be relevant to
all applications of dynamic downscaling for regional climate simulations.
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1. Introduction

[2] To obtain greater horizontally resolved information
from long term global general circulation model (GCM)
simulations, a downscaling of the results by statistical meth-
ods ‘‘statistical downscaling’’) or by high-resolution regional
climate models (RCMs) (‘‘dynamical downscaling’’) have
been applied. Downscaling from global reanalysis data by
RCMs as a cheap alternative to a high-resolution regional
reanalysis has also been used [e.g., Feser et al., 2001;
Miguez-Macho et al., 2004; Kanamitsu and Kanamaru,
2007; Castro et al., 2007a, 2007b]. In both cases we want
the downscaling technique to retain the large-scale features
given by the global reanalysis and add information on the
smaller scales.
[3] Castro et al. [2005] proposed four types of dynamic

downscaling. Type 1, which is used for numerical weather
prediction, remembers its real-world initial conditions, as do
the lateral boundary conditions.
[4] In Type 2, the initial conditions in the interior of the

model are ‘‘forgotten’’ but the lateral boundary conditions

feed real-world data into the regional model (through the
reanalyses in our study). In Type 3, a global model predic-
tion, rather than a reanalysis, is used to create the lateral
boundary conditions. The global model prediction, however,
includes real-world data such as prescribed SSTs, sea ice
coverage, etc. These internal climate system components are
assigned and not predicted. This constrains the global model
predictions such that some real-world data is still fed into the
regional model through the lateral boundary conditions. In
Type 4, a global model is run in which there are no
prescribed internal climate system forcings. The coupling
(interfacial fluxes) among the ocean-land-continental ice-
atmosphere are all predicted.
[5] In this paper, we assess the value of dynamic down-

scaling using Type 2 simulations. Castro et al. [2005]
investigated Type 2 dynamic downscaling in a suite of
experiments for May 1993 using the RAMS model [Pielke
et al., 1992] to see how that model behaves in this respect.
May 1993 was selected due to the strong baroclynic waves
present during this time making this month particularly
suitable to test any RCM. Both a commonly-used nudging
to NCEP reanalysis data (i.e., nudging the grid boxes in a
sponge zone at the boundaries [Davies, 1976]) and an
interior nudging alternative were tested. They found that
the interior nudging gives better results for large scales but
at the expense of a reduced variability at smaller scales.
[6] Two questions arising from this study will be exam-

ined in this paper:
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[7] 1. Can the results be confirmed using a different
model system? and
[8] 2. What is the effect of a different interior nudging

technique (i.e., the difference between a 4DDA internal
nudging type and spectral nudging)?
[9] A recent study by Xue et al. [2007] investigated

aspects of the ability to dynamically downscale and found
that domain size, lateral boundary conditions, and grid
spacing were crucial issues associated with dynamic down-
scaling. We will investigate this issue further in this paper
under the aspect of internal spectral nudging. It has to be
noted that with increasing domain size the RCM will exhibit
to a greater extent the chaotic nature of the atmosphere.
However, we did not investigate this in our present study in
this paper.
[10] This study does not aim (as in the ‘‘Big Brother’’

experiment [Denis et al., 2003]) to determine whether the
downscaled simulation can recreate the variability that was
removed by spatial filtering and generated the initial and
boundary conditions for the little brother experiment.
[11] The main focus of our study is to investigate whether

skill in variability is added on the small scales. Even though
in the presented Type 2 simulations no skill in variability is
added to the larger wavelengths, RCMs may predict large
scale features better than global circulation models for
Type 3 and Type 4 experiments. However, the latter has
still to be investigated by similar experiment set ups. If their
domain is made large enough to resolve the dynamics and
physics which generate and propagate these large-scale
systems.
[12] Type 2 downscaling, since the global analyses are

based on real world data, provides the most accurate
description of the large scale atmospheric features. Type 3
and 4 downscaling which are not constrained by such
observations, will not be as skillful at replicating these
features. This is because the Type 2 downscaling is strongly
forced by lateral boundary conditions and interior nudging
so as to conform closely to the observations on the spatial
scales that are resolved by the global analyses.
[13] Type 3 downscaling has a much less influence from

the large scale (any influence is just due to prescribing data
for use in a global model simulation from surface boundary
observations such as sea surface temperatures, vegetation
and soil moisture, etc.), while Type 4 downscaling has no
observational constraints. Type 2 downscaling therefore
provides the maximum skill that is achievable in accurately
simulating regional and smaller scale atmospheric features.
[14] We also investigate how different kinds of nudging

(i.e., standard boundary relaxation, 4DDA type internal
nudging, spectral nudging) affect the spectral distribution
of variability in two model systems.

2. Model and Methods

[15] For our study we used the regional climate model
CLM which is the climate version of the German Weather
Service (DWD) numerical weather forecast model COSMO
(consortium for small-scale modeling) formerly known as
‘‘Local Model’’ [Steppeler et al., 2003]. For the simulations
of May 1993 the model time step was 120 s for all experi-
ments. We applied lateral boundary forcing according to the
method of Davies [1976]. Data for initialization and the

lateral boundaries used for the model simulations were taken
from the forty year reanalysis (ERA40) [Uppala et al.,
2005] of the European Centre for Medium Weather Forecast
(ECMWF) with a horizontal grid increment of about 125 km.
For nudging in the interior domain (i.e., over the whole
model domain) a spectral nudging technique [e.g., Kida et
al., 1991; von Storch et al., 2000] can be applied.
[16] In the standard setup, the observed state is forced

upon the model in a lateral boundary zone covering eight
grid points using Davies [1976] classical ‘‘sponge’’ tech-
nique: The ‘‘interior’’ solution of the model, denoted Y, is
brought closer to, or ‘‘nudged’’ to the observed state,
denoted Y*, by adding an adjustment or restoring term g �
(Y* � Y), where the ‘‘nudging coefficient’’ g takes largest
values at the lateral boundary and decreases toward the
interior of the integration domain. In the CLM g decreases
as a function of hyperbolic tangent and shows significant
weight only for grid points with less than nine grid points
distance from the boundaries. The nudging coefficient has
units of 1/s. This standard approach is commonly used in
regional weather forecasting and regional climate simula-
tions. The ‘‘sponge’’ zone has been introduced to avoid
reflection of traveling features at the boundaries. Inconsis-
tencies stemming from internally generated features travel-
ing toward the lateral boundaries and conflicting there with
the prescribed conditions are dampened out in this manner.
[17] In the ‘‘spectral nudging’’ approach, the lateral

‘‘sponge forcing’’ is kept and an additional steering is
introduced as described next.
[18] Consider the expansion of a suitable CLM variable:

Y l;f; tð Þ ¼
XJm;Km

j¼�Jm;k¼�Km

am
j;k tð Þeijl=Lleikf=Lf ð1Þ

with zonal coordinates l, zonal wave numbers j and zonal
extension of the area Ll. Meridional coordinates are denoted
by f, meridional wave numbers by k, and the meridional
extension by Lf. t represents time. For CLM, the number of
zonal and meridional wave numbers is Jm and Km. A similar
expansion is done for the analyses, which are given on a
coarser grid. The coefficients of this expansion are labeled
aj,k
a , and the number of Fourier coefficients is Ja < Jm and

Ka < Km. The confidence we have in the realism of the
different scales of the reanalysis depends on the wave
numbers j and k and is denoted by hj,k.
[19] The model is then allowed to deviate from the state

given by the reanalysis conditional upon this confidence.
This is achieved by adding ‘‘nudging terms’’ in the spectral
domain in both directions

XJa;Ka

j¼�Ja;k¼�Ka

hj;k aa
j;k tð Þ � am

j;k tð Þ
� �

eijl=Lleikf=Lf ð2Þ

In the following, we will use the nudging terms dependent
on height. That is, our confidence in the reanalysis increases
with height. On the other hand, we leave the regional model
more room for its own dynamics at the lower levels where
we expect regional geographical features are becoming
more important. The better the confidence, the larger the
hj,k-values and the more efficient the nudging term.
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[20] In this study, we have applied nudging to the zonal
and meridional wind components. Following Giorgi et al.
[1993] we use a height-dependent nudging coefficient.
Specifically, we use a pointwise nudging in case of exces-
sively high wind speeds for preventing numerical instability

h0 pð Þ ¼ a 1� p

850 hPa

� �2

for p < 850 hPa

0 for p > 850 hPa

(
ð3Þ

with p denoting pressure. Figure 1 shows the weighting
function applied in this study.
[21] We have set hj,k = h0 for j = 0, . . ., nj in the north–

south direction, k = 0, . . ., nk in the east–west direction and
hj,k = 0 otherwise. nj and nk are determined by

nkm ¼ nxm * Dxm

4 * Dxa
ð4Þ

njm ¼ nym * Dym

4 * Dya
ð5Þ

where nxm and nym are the number of grid cells in the
meridional and zonal direction, respectively. Dxm, Dxa and
Dym, Dya are the grid mesh widths in the meridional and
zonal direction, respectively. Subscript m and a denotes
CLM and ERA40 reanalysis data, respectively.
[22] For the interior nudging test case we applied this

nudging to the horizontal wind components u and v above
850 hPa with a height-dependent weighting function. As
can be seen from Figure 1, the weighting is very light with a
maximum of 0.05 at the top of the model. Grid data from
the ERA40 reanalysis and the CLM are transferred into the
spectral space where the values of u and v for the large wave
numbers of the CLM are nudged by those of the reanalysis.

All values for wavelengths larger than the one corresponding
to the smallest physically resolved wavelength 4Dx [Pielke,
2002] of the reanalysis are nudged. The resulting fields
are transferred back to the grid space. Table 1 summarizes
the grid widths and the related maximum wave number
kmax* corresponding to 4Dx. The spectral nudging is
applied each model time step.
[23] To distinguish between the kmax* of the reanalysis

data and the CLM, we denote the first one with an upper
case K and the second one with a lower case k (i.e., Kmax*
and kmax* , respectively).
[24] Both models, RAMS and CLM, have the same

boundary forcing method [Davies, 1976] implemented
which is the most commonly used nudging in RCMs.
However, RAMS and CLM differ substantially in how the
additional nudging in the interior of the model domain is
performed in our experiments. For RAMS, a four-
dimensional assimilation is applied across the wavelengths
resolved by the regional model which nudges the grid
values of the prognostic variables toward those of the
driving reanalysis. For the spectral representation this
means that RAMS and the driving model are combined
over the whole wavelength spectrum. The interior nudging
applied in the CLM experiment is quite different since it
does not perform nudging in the grid space but in the
spectral space and nudges the large-scale wavelengths only.
Therefore because of the height dependency and the small
nudging coefficient, we leave the regional model more room
for its own dynamics especially at the lower levels. Weaver
et al. [2002] reached a similar conclusion using a config-
uration with weaker nudging and higher resolution, support-
ing the idea that by not nudging synoptic scale observations/
reanalysis at the mesoscale, simulations can be improved.
[25] Model resolution in climate studies has improved

recently due to increased computing power for both GCMs
and RCMs. For example, in the project ENSEMBLES
[Hewitt and Griggs, 2004] simulations for future scenarios
with several RCMs will be performed on a 25-km horizontal
grid mesh size which is half of the commonly applied
resolution in prior experiments. To stay abreast of these
changes, we applied an experimental setup which is one
step higher in resolution than in the study by Castro et al.
[2005]. However, we kept the same small and large domain
size (see Figure 1 in the work of Castro et al. [2005]). A
comparison of the setups for the basic experiments between
Castro et al. [2005] and this study is compiled in Table 2.
[26] In a follow-on suite of experiments we repeated the

basic experiments but applied spectral nudging to the same
cases presented in Table 2.
[27] The first and main focus of our analysis is on

the differences in the spectral distribution of variability in
the two model systems. This is shown on the example of the
column average total kinetic energy and column integrated
moisture flux divergence MFC (see equations (13)–(14) in

Figure 1. Weighting function h0 of spectral nudging
versus pressure height using a value for a of 0.05.

Table 1. Maximum Wave Number for Different Grid Mesh Sizes

Dx
(km)

kmax*
(10�5 m�1)

log10
(kmax* )

ERA40 125 1.26 �4.90
CLM 100 1.57 �4.80
CLM 50 3.14 �4.50
CLM 25 6.28 �4.20
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the work of Castro et al. [2005]). Since the kinetic energy is
a function of v2 the main contribution to the total column
kinetic energy comes from values in the upper troposphere.
The main contribution to the total column integrated mois-
ture flux divergence comes from the planetary boundary
layer values of MFC due to the high moisture values near
the surface. Figure 2 illustrates the vertical distributions of
kinetic energy and MFC.
[28] We compared the variability added by the CLM

against ERA40 and not another model because ERA40
includes observations and is a better representation of reality
than model output alone.
[29] The second focus is on the influence of adding

internal nudging to the standard relaxation boundary nudg-
ing on the prediction of various quantities.
[30] We applied the same spectral analysis of the model

variables as described by Castro et al. [2005] to determine
the power spectrum S(k) of the variables, where k is the
wave number. The fractional change in spectral power
DS(k)frac is computed for each analysis time step (i.e., every
6 hours) as:

DS kð Þfrac¼

S kð Þm1

S kð Þa
� 1; for basic experiments

S kð Þm2

S kð Þm1

� 1; for follow up experiments

8>>><
>>>:

ð6Þ

where a is the reanalysis, m1 is the basic experiment without
internal nudging, and m2 is the follow-on experiment with
internal nudging.

3. Results and Discussion

3.1. Variability

[31] Regarding differences in results of RAMS and CLM,
we expect larger dissimilarities to occur in the MFC than in
the kinetic energy. The MFC is mainly influenced by
humidity near the Earth’s surface and in the planetary
boundary layer (PBL). Physical parameterizations and sur-
face characteristics in the models play an important role on
the moisture budget in this part of the atmosphere. Since
RCMs typically differ in parameterization schemes imple-
mented (as with RAMS and CLM), we can expect larger
differences in MFC than in kinetic energy. Kinetic energy is
mostly influenced by upper air wind speeds which are less
sensitive (but not negligible) to parameterizations than the
MFC.
[32] Figure 3 shows the fractional change in spectral

power for the column-average total kinetic energy and the

MFC as a mean over the last 15 days of May 1993. This
figure compares to Figure 4 in the work of Castro et al.
[2005]. For the kinetic energy the results from the basic
model experiments look very similar. Both models show the
same behavior in variability for wave numbers higher than
Kmax* . Kmax* for the course grid model is denoted by a solid
vertical line in all figures; the vertical dashed line shows
the kmax* of the 25-km CLM version. The higher the
horizontal resolution the higher the added variability. For
low wave numbers (less than Kmax* ) the CLM retains about
the same variability as the RAMS version with explicit
microphysics and Kain-Fritsch scheme turned on.
[33] The MFC (Figure 3, right-hand side) in the CLM

simulations shows the same features as the kinetic energy,
but with an even larger variability for wave numbers larger
than Kmax* . This is as expected since higher resolved surface
characteristics lead to a greater variability in surface and
near-surface atmospheric parameters. The results between
CLM and RAMS are different for MFC. Castro et al. [2005]
showed that the results from their experiments with the Kuo
convection scheme are poorer than those with the Kain-
Fritsch scheme. This partly explains the differences in the
MFC shown in Figure 3 compared to Figure 4 of Castro et
al. [2005]. For a more detailed study of the differences, an
in-depth comparison of the different physical parameter-
izations in CLM and RAMS influencing the MFC would
need to be performed. This is beyond the scope of the study
completed here.
[34] The dotted curve in Figure 3 describes the fractional

change in spectral power for the 25-km grid mesh on the
large domain. Comparing the two curves for 25 km (large
and small domains) we find that kinetic energy and MFC
show a significantly different behavior. Kinetic energy is
less retained at large scales on the large domain whereas

Table 2. Setup of Basic Experiments

Basic
Experiment

Dx
(km) Domain

RCM Grid
Dimensions

RCM
Name

1 200 small 40 � 25 RAMS
2 100 small 80 � 50 RAMS, CLM
3 50 small 160 � 100 RAMS, CLM
4 25 small 320 � 200 CLM
5 200 large 80 � 50 RAMS
6 100 large 160 � 100 RAMS, CLM
7 50 large 320 � 200 RAMS, CLM
8 25 large 640 � 400 CLM

Figure 2. Vertical contribution of kinetic energy (KE) and
moisture flux divergence (MFC) to the total vertically
integrated values (this example is taken from the mean over
the large-scale domain for the 50-km control simulation).
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there is increased spatial variability on the smaller scales k >
Kmax* . The MFC shows the opposite behavior. The value for
the large-scale is better retained for the large area whereas
we obtain a reduction in the added variability for wave
numbers k > Kmax* . This holds also for the 50-km and
100-km experiments. For the kinetic energy the results for
large wavelengths lead to the same conclusions for the
50-km and 100-km as for the 25-km version. The only
difference appears for the short wavelengths where the
variability on the large domain decreases stronger than the
one on the small domain. This suggests a dependence of
the variability on the area/number of grid points ratio.
[35] The different behavior of kinetic energy and MFC

can be explained by the surface characteristics of the small
and large domain. On the small domain, land areas are the
main lower boundary, whereas by extending to the large
domain, mainly ocean area is added. This means that the sea
surface temperature (SST) plays an important role on the
large domain. SST has a major influence on near-surface
atmospheric humidity and therefore on MFC.
[36] Since the SST is prescribed by the large-scale re-

analysis, it has a comparable effect as an interior grid scale
nudging (i.e., in terms of spectral nudging it would be like
nudging over all wavelengths not just the large ones). In terms
of MFC, this means that the large-scale values are retained
but added variability is suppressed for smaller scales.
[37] We also investigated the time evolution of the

fraction of reanalysis kinetic energy (i.e., total kinetic
energy from reanalysis data divided by total energy of the
regional model) and the fraction of reanalysis kinetic energy
variance for the whole May 1993 (no figures shown here).
The variation of these fields is similar in both studies,
except that the loss of energy in the RAMS simulations
within the first 3 days of their simulation does not appear in
the CLM simulation. RAMS does not recover from this loss
but the values vary around this value during the rest of the
simulation. The loss of energy in RAMS in the first 3 days

of the simulation could be due to the cruder interior nudging
of RAMS (with its inclusion of all regional model resolved
wavelengths component) which damps the solutions right
away.
[38] In addition to the basic experiments, we performed a

follow-on experiment suite where the basic experiments
were repeated but with additional interior nudging added.
Figure 4 (solid curve) shows the results of the 25-km
experiment on the small domain compared to the basic
experiment applying equation (6) (this curve compares to
Figure 9 shown in Castro et al. [2005]). Again, results in
kinetic energy confirm the findings by Castro et al. [2005].
For large scales (i.e., wave numbers less Kmax* ) the values
for the RCM are pushed nearer to those of the global
reanalysis which means that the value is better retained by
applying interior nudging. Both RCMs show a reduction in
added variability. The influence in the CLM results is less of
a reduction in the added variability mainly due to the fact
that in CLM only the large wave numbers are nudged.
[39] The influence on the MFC for the larger scales is

similar in both models. As for the kinetic energy the interior
nudging retains the value of the global reanalysis. However,
there are major differences for the small scales between the
CLM and RAMS results. RAMS reduces the added vari-
ability, whereas in CLM the added variability is nearly
preserved. This is primarily due to the different kind of
interior nudging.
[40] The interior nudging in the grid space as applied in

RAMS is performed over the whole grid for the prognostic
variables (wind, temperature, pressure, and water vapor),
whereas in the CLM the interior nudging is applied in the
spectral space for large wavelengths only and the nudging is
applied only above the PBL and only to the wind components.
[41] The dashed curve in Figure 4 describes the results for

the large domain. Here the behavior of the regional model at
the large-scale is the same as for the small domain. The

Figure 3. Fractional change in spectral power for column-average total kinetic energy (left) and
integrated moisture flux convergence (MFC) (right). Results are for Dx = 100 km, 50 km, 25 km (green,
red, and magenta lines, respectively) on the small domain. The dotted lines show the results for the large
domain. k in units of m�1. Wavelength in units of m. The vertical solid and dashed line show the Kmax* for
the course grid model and the 25-km RCM version, respectively.
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interior nudging helps retain the large-scale values. How-
ever, there are differences on the smaller scales.
[42] For the kinetic energy the added variability is better

retained for k > Kmax* at values lower �4.5 for log10(k) but
poorer for larger wave numbers. The added variability for
the MFC is no longer preserved, but decreases. The values
of MFC depend on the gradients of the horizontal velocities
and the absolute humidities, while the KE is calculated from
the square of the velocities. A field that is derived from
gradients (i.e., the MFC) will produce different scales of
variability than a field which involves the original variables
themselves (i.e., the KE). In the larger-scale domain, the
gradient apparently becomes smeared more than the veloc-
ities themselves, and loses this variability. This can be either
due to the greater region for internal damping as systems
propagate in from the lateral boundaries, or that for this
month, May 1993, the MFC is dominated by the large-scale
signal, not by the mesoscale. For the latter only the better
performance of the interior nudging allows this to show.
The higher variability of the MFC at the smaller scales over
the small domain compared to the large domain was a
reaction to the excessive nudging due to the prescribed SST
dominating the surface boundary condition of the large
domain.
[43] Results for the 50-km grid mesh (not shown) are

similar to those in the work of Castro et al. [2005, Figure 9].
The authors do not consider the 100-km grid mesh since the
reanalysis data are on a grid of similar size (125 km).
Therefore there are hardly any additional small scales to be
compared.

3.2. Effect of Internal Nudging on Predicted Quantities

[44] Our investigation regarding the 500-hPa height dif-
ference without internal nudging (see Figure 5, top figures,
compares to Figure 3 in Castro et al. [2005]) leads to the
same results and conclusions as for the RAMS simulations.

The greatest differences occur in regions of low pressure
troughs off the west coast of North America, over the
Hudson Bay and over the east Atlantic near the British
Isles. Even the magnitudes of the differences are approxi-
mately the same. For the follow-on experiment with interior
nudging, CLM results show less maximum differences
(�10 m) compared to RAMS (�35 m) (see Figure 5,
bottom figures, compared to Figure 8 in Castro et al.
[2005]). This can be related to the fact that RAMS interior
nudging is performed equally weighted across the wave-
length spectrum resolved by the model, whereas the interior
nudging of the CLM is performed as selective nudging with
higher weights on the long-wave features. This keeps the
CLM nearer to the reanalysis, at least above the PBL.
Differences occur in the same regions for the small and
large domain simulations and increase with domain size.
Spectral nudging is able to nearly cancel out the differences
independent of the domain size, i.e., differences for the
simulations with spectral nudging are of the same order for
the small and large domain.
[45] The interpretation of internal nudging on precipita-

tion is not so straightforward as for the 500-hPa geopoten-
tial height. Precipitation is affected by other model specifics
that have an impact at least on the same order as internal
nudging. For example, Castro et al. [2005] showed the
effect of different convection schemes in the RAMS model
on precipitation prediction. Thus we expect the effect of
internal nudging to be less dominant for precipitation than
for the 500-hPa geopotential height.
[46] Figure 6 shows the precipitation amount for the

second half of May 1993 over the United States calculated
with the CLM with 25km grid mesh. The results may be
compared to the precipitation for the same period fromERA40
reanalysis and from NCEP observations (see Figure 7).
[47] Despite higher precipitation amounts and higher

spatial variability, three of the simulations show similar

Figure 4. Fractional change in spectral power (spectral nudging vs. control) for column-average total
kinetic energy (left) and integrated moisture flux convergence (MFC) (right) on the small domain (solid
curve) and on the large domain (dashed curve) for Dx = 25 km. k in units of m�1. Wavelength in units of
m. The vertical solid and dashed line show the Kmax* for the course grid model and the 25-km RCM
version, respectively.
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overall precipitation patterns as the driving ERA40 reanal-
ysis (Figure 7). We can draw the same conclusion in
comparing the internal nudging run with Kain-Fritsch
convection scheme in the study by Castro et al. [2005]
with the precipitation from the driving NCEP reanalysis.
[48] As expected the results are poorer for the simulation

on the large domain without internal nudging (Figure 6, top
right). There is no precipitation over South and Central U.S.
Compared to the observations (Figure 7) the precipitation
amount for the other simulations in the CLM is too high.
[49] In addition to these qualitative descriptions the

correlation coefficients for the precipitation fields from
25 km CLM simulations in Figure 6 compared to NCEP
observations give a quantitative measure for the perfor-
mance of the different experiments. As expected the coef-
ficient is lowest for the large area/no spectral nudging
experiment. The correlation coefficient is 0 (i.e., no corre-
lation at all) in that case. With spectral nudging turned on,
the correlation is 0.43; slightly lower than for the small area
with spectral nudging (0.46) but higher than for the small
area with no spectral nudging version (0.37).

[50] We also compared the effect of internal nudging on
two meter temperature and surface pressure. However, the
effect of different planetary boundary layer parameteriza-
tions in the driving model and the regional model overrules
the large-scale dynamics. Recently Gustafson and Leung
[2007] came to the same conclusion in their study on
regional downscaling. Nevertheless, the authors examined
the results of two meter temperature and surface pressure
but found no significant differences in the horizontal distri-
bution between the versions with and without spectral
nudging. Thus these quantities do not add sufficient addi-
tional information on the nudging issue studied for this
paper.
[51] We did not perform any investigations on the spatial

scales of these quantities. This should be considered in
future studies on numerical downscaling. Techniques like
the one by Feser [2006] can give additional information.

4. Conclusions

[52] The results for CLM presented here are similar to
those found in the RAMS study by Castro et al. [2005] for

Figure 5. Difference in 500-hPa height as differences between the driving analysis and the CLM results
for the second half of May 1993. Differences for simulations without and with spectral nudging are
shown in the top and bottom rows, respectively. Isolines are drawn in 10-hPa intervals.
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the standard experiments, i.e., with commonly used nudging
in a sponge zone after Davies [1976]. For the interior
nudging experiments, the spectral nudging technique
applied in the CLM simulations shows different results than
the four-dimensional assimilation applied to the RAMS.
[53] Using spectral nudging as interior nudging gives less

reduction in added variability of the smaller scales than grid
nudging and is therefore the preferred approach in dynamic
downscaling. The main reason is that spectral nudging is
applied to large wavelengths and a subset of the dependent
variables (i.e., the horizontal wind components) whereas
grid nudging affects the entire resolved wave spectrum and
each of the dependent variables. The results regarding the
MFC suggest the effect to be largest for physical quantities

in the lower troposphere. It has been shown that spectral
nudging is preserving the variability of MFC at the small
scales which is a major advantage over the full interior
nudging as applied in the RAMS simulations.
[54] Spectral nudging in this study is applied every model

time step (2 minutes). This emphasizes the fact that spectral
nudging suppresses the variability at the small scales less
than the broad spectrum grid nudging even more. For
follow-on studies, the question arises whether there is an
optimal time step for applying spectral nudging which still
retains the large-scale values and results in even less
suppression of the added variability.
[55] Our conclusions also demonstrates that the conclu-

sions in the work of Castro et al. [2005] are not model

Figure 6. Precipitation results from CLM simulations for the second half of May 1993 without and with
spectral nudging in the top and bottom rows, respectively.

Figure 7. Precipitation from NCEP observation (left) and ERA40 reanalysis (right) for the second half
of May 1993.
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specific in that the utility of all regional climate models in
downscaling global reanalysis primarily

is not to add increased skill to the large-scale in the upper atmosphere,
rather the value added is to resolve the smaller-scale features which
have a greater dependence on the surface boundary.

[56] Furthermore,

dynamical downscaling. . . does not retain value of the large-scale over
and above that which exists in the larger global reanalysis. If the
variability of synoptic features is underestimated or there is a consis-
tent bias in the larger model, no increased skill would be gained by
dynamical downscaling.

[57] Similar additional studies are needed to answer the
question whether this holds (and if so under what condi-
tions) for Type 3 (definition [see Castro et al., 2005])
dynamic downscaling, as any real-world observational con-
straint on the simulation becomes less than with Type 2, and
for Type 4 simulations, does not even exist at all.
[58] To prove this the experiments need to be done with

dynamical downscaling of higher orders (i.e., GCM data).
This is a question for future investigation–that is urgently
needed. It is not included in the present article which is
primarily to confirm the behavior described by Castro et al.
[2005] with a different model system.
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