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1. INTRODUCTION

Repeated drought and famine on the African conti-
nent in the last few decades have led to a high aware-
ness of the effect of climate variability and the poten-
tial danger of future climate change (Hulme 1992,
Nicholson 1993). The north of Cameroon, being in the
Sahelian zone, has been affected, and the negative
effects have been felt across the entire country, with
some shortages in agricultural produce. Because agri-
culture in the country is entirely rain-fed and more

than 90% of electricity is produced by hydropower
plants, studies have been undertaken to assess vulner-
ability to long-term climate changes that are expected
to result from increased greenhouse-gas (GHG) con-
centration in the atmosphere (IPCC 2001). These stud-
ies require projections of possible changes in the tem-
poral and spatial patterns of local rainfall, temperature,
and other important climatic variables.

General circulation models (GCMs) are currently the
most used tool for these projections. However, due to
their coarse resolution, typically 300 km × 300 km in

© Inter-Research 2004 · www.int-res.com*Email: epenlap@uycdc.uninet.cm

Downscaling of GCM scenarios to assess
precipitation changes in the little rainy season

(March–June) in Cameroon

Edouard K. Penlap1, 2,*, Christoph Matulla1, 3, Hans von Storch1, 
F. Mkankam Kamga2

1Institute for Coastal Research, GKSS Research Centre, Max-Planck-Straße, 21502 Geesthacht, Germany
2Atmospheric Sciences Lab, Dept of Physics, Faculty of Sciences, University of Yaoundé I, PO Box 812, Yaoundé, Cameroon

3Institute of Meteorology, University of Natural Resources and Applied Life Sciences, 1180 Vienna, Austria

ABSTRACT: Large-scale climate forcings on local precipitation in Cameroon are analysed during the
little rainy season (March–June). Variables found to have strong influence are used to downscale
GCM projected rainfall for 2010–2049. In particular, 2 IPCC IS92a scenarios, simulated by the
ECHAM4/OPYC3 climate model, are investigated. First, monthly precipitation data from 1951–1990
at 33 meteorological stations are grouped into homogeneous rainfall regions using self-organising
feature maps (SOFMs). SOFMs identified 3 groups of stations with related time-series variability.
Then, an empirical orthogonal function procedure, followed by canonical correlation analysis (CCA),
is used to derive statistical relationships between the homogeneous regions and large-scale variables
from the NCEP/NCAR Reanalysis Project. A CCA model is established for every region. Numerous
fields at different pressure levels are used as macro-scale predictors. All possible combinations of 2
predictors are systematically tested in 3 validation experiments. Those combinations that perform
well in the experiments are used to derive local-scale precipitation scenarios from the general circu-
lation model (GCM) climate projection experiments. Different combinations of large-scale variables
enter the model depending on region. A composite analysis suggests that precipitation is related to
an advective (convective) phenomenon in the northern (southern) part of the study domain. More-
over, precipitation changes based on 2 IS92a emission scenarios as simulated by ECHAM4/OPYC3
are calculated. The trace-gas-only and the trace-gas-plus-sulphate integrations induce changes
ranging locally from +44 to –10% and from +36 to –9% respectively, relative to the 1951–1990
control period.

KEY WORDS:  Cameroon · Precipitation · Regionalisation · Downscaling · Climate change

Resale or republication not permitted without written consent of the publisher



Clim Res 26: 85–96, 2004

the tropics, they cannot be used for projecting local-
scale changes (Grotch & MacCracken 1991). This is
particularly true for surface climate variables needed
for impact studies (Kamga 2000). Improving their reso-
lution may by hindered due to limitations in computing
power and in the understanding of all the processes
involved. Furthermore, it is estimated that the skillful
scale of GCMs is about 8 times the grid scale; therefore
GCM output should not be applied to smaller scales
(von Storch et al. 1993, Johannesson et al. 1995). Pre-
sent GCM climate projections must be converted or
downscaled to higher regional or local resolutions. The
leading techniques used are dynamical and statistical
(empirical) downscaling (Hewitson & Crane 1996).

In dynamical downscaling, a limited-area model
(LAM) of the area of interest is nested in a GCM and
evolves with it while using its output as boundary con-
ditions (Giorgi 1990, Giorgi et al. 1994). Because of
their process-based approach, LAMs are expected to
generate reliable regional results, since topography,
land-use patterns and other geographical features can
be taken into account. In spite of their resolution being
about 10 times higher than that of GCMs, in some
experiments; they have failed to reproduce observed
precipitation statistics at the spatial and temporal
scales required for regional impact assessment (Bates

et al. 1998, Giorgi 1991). Furthermore, they are com-
putationally expensive, and most impact assessment
research groups do not have access to a LAM or its
output.

Another strategy to overcome the gap between large
and local scales is the use of empirical downscaling
techniques (von Storch et al. 1993). It requires empiri-
cal linkages between large-scale circulation patterns
or variables that are well resolved and projected by
GCMs, and the local climate variables of interest. A
model representing the relationship between large-
and local-scale variables is built and calibrated with
observations from the current climate, and it is
assumed in most cases that these relations will still
hold under a changed climate. Various methods are
used, including regression analysis (Matulla et al.
2002), canonical correlation analysis (von Storch et al.
1993, Zorita et al. 1995) and neural networks (Olsson et
al. 2001). Empirical methods offer an attractive ap-
proach at significantly lower computing costs (Hewit-
son & Crane 1996) to assess the potential impacts of
climate change in the central African region where
there is no LAM running at present. However, the
literature contains only a few examples of such studies
in tropical Africa (e.g. Jenkins 1997, Cook 1997, Indeje
et al. 2001).
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Fig. 1. Topography of Cameroon and stations used in this study. Boxplots of monthly rainfall typical of various annual rainfall regimes
across the country are shown
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In this study, we are interested in local patterns of
rainfall under a changed climate for Cameroon. Owing
to its latitudinal extension, its proximity to the Atlantic
Ocean and the variety of its relief, Cameroon has many
climatic zones. In particular, the spatial rainfall
patterns are quite complex (Fig. 1). Furthermore,
the annual cycle of rainfall is modulated by the
south–north and north–south annual migration of the
Intertropical Convergence Zone (ITCZ), which marks
the limit between the dry Sahelian Harmattan winds
and the humid South Westerly Monsoon flow
(Janowiak 1988).

The different sources of variability resulting in this
spatio-temporal diversity point to the difficulties in
easily identifying single large-scale variables that
influence precipitation over Cameroon. Some region-
alisation studies on a monthly basis have previously
been done in the area (Mkankam et al. 1994) in order
to characterise the sources of variability. Hence, we
decided to regionalise the precipitation data before
downscaling, as this strategy can be beneficial in such
a situation (Woth 2001).

2. DATA

For model fitting of relations between large and
local scales, we used monthly mean values of relative
and specific humidity, temperature, geopotential
height, zonal and meridional wind, vorticity and
divergence at 4 pressure levels (200, 500, 700 and
850 hPa). Sea-level pressure and sea-surface tem-
perature were also examined. The present climate is
represented by the output of the NCEP/NCAR 50 yr
Reanalysis Project, which uses a state-of-the-art
analysis/forecast system to perform data assimilation
using data from 1948–1998 (Kalnay et al. 1996, Kistler
et al. 2001). As only the above-mentioned large-scale
predictors are used, the fact that the NCEP/NCAR
Reanalysis precipitation data are not fully reliable
over a part of tropical Africa north of the equator prior
to 1967–1968 (Poccard et al. 2000) does not affect our
downscaling approach. The data assimilation and the
global spectral model are identical to the global sys-
tem implemented operationally at NCEP on January
1995, except that the horizontal resolution is T62,
about 210 km. The data used, gridded in 2.5° longi-
tude × 2.5° latitude cells, cover 1951–1990 and a sec-
tor from 20° W to 20° E and 20° S to 15° N. They were
downloaded from the NOAA-CIRES Climate Diagnos-
tics Centre Website (www.cdc.noaa.gov/). The predic-
tor domain is shifted to the south-west sector (see
Figs. 3 or 4), since Cameroon precipitation climate is
mainly affected by air masses originating over the
Atlantic Ocean (Suchel 1987, Nicholson 2000).

At the local scale, we use 2 different monthly precipi-
tation datasets: one obtained directly from the National
Meteorological Service of Cameroon (NMSC), and the
other from the Food and Agriculture Organisation
(FAO) of the United Nations. Using both fragmentary
sets, it was possible to extract 33 station records, with
sufficient data for 1951–1990, with at most 2% missing
data (Table 1, Fig. 1). In this study, we are interested in
rainfall totals for the March–June (MAMJ) period,
locally known as the little rainy season.

The behaviour of large-scale variables under climate
change is simulated by the Max Planck Institute (MPI)
coupled atmosphere–ocean GCM model ECHAM4/
OPYC3 (Roeckner et al. 1996). Kamga (2000) found
that this model gives a good representation of the cli-
mate (temperature and rainfall) over Cameroon and
some of its neighbouring areas and that the spatial cor-
relations between the mean field of the NCEP/NCAR
Reanalysis and the ECHAM4/OPYC3 control run
patterns are larger than 0.9.
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Label Station name Longitude Latitude Altitude
(°) (°) (m)

1 Maroua 14.25 10.45 423
2 Kaele 14.43 10.08 338
3 Guider 13.95 9.93 356
4 Garoua 13.38 9.33 213
5 Poli 13.23 8.48 436
6 Ngaoundere 13.56 7.35 1113
7 Meiganga 14.33 7.16 1027
8 Banyo 11.81 6.75 1110
9 Tibati 12.62 6.47 874
10 Betare-Oya 14.08 5.6 805
11 Yoko 12.36 5.55 1031
12 Bertoua 13.73 4.6 668
13 Batouri 14.36 4.46 655
14 Yokadouma 15.10 3.52 640
15 Lomie 13.61 3.16 640
16 Abong-Mbang 13.20 3.96 693
17 Nanga-Eboko 12.37 4.65 624
18 Akonolinga 12.25 3.77 671
19 Sangmelima 11.98 2.93 713
20 Ambam 11.23 2.38 602
21 Ebolowa 11.17 2.9 603
22 Kribi 9.9 2.93 13
23 Eseka 10.73 3.62 228
24 Yaounde 11.51 3.83 760
25 Bafia 11.16 4.73 501
26 Ngambe 10.60 4.2 650
27 Edea 10.13 3.8 32
28 Douala-Obs. 9.7 4.01 10
29 Nkongsamba 9.93 4.95 816
30 Bafoussam 10.43 5.48 1460
31 Koundja 10.75 5.65 1217
32 Bamenda 10.18 5.93 1608
33 Manfe 9.3 5.75 126

Table 1. List of the stations used and their geographical 
co-ordinates. See also Fig. 1 for spatial locations
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In the ECHAM4 experiment, performed in 1995, the
horizontal resolution of the atmospheric model was
5.6° latitude × 5.6° longitude and the ocean model was
2.8° × 2.8°. Following an initialisation period of histori-
cal GHG forcing from 1860–1990, 3 simulations were
performed: (1) a 300 yr control simulation with GHG
concentrations kept at 1990 levels; (2) a ‘GHG only’-
forced experiment using a 1% annual increase in
forcing for 1990–2099; and (3) a ‘GHG plus sulphate
aerosol’ integration (CO2 + SO4 aerosols) for
1990–2049. The 1% increase is in accordance with the
IS92a emission scenario of the Intergovernmental
Panel on Climate Change (IPCC 2001). The output
data were interpolated to the NCEP/NCAR 2.5° × 2.5°
Reanalysis grid.

3. REGIONALISATION OF PRECIPITATION—
SELF-ORGANISING FEATURE MAP

3.1. The need for regionalisation

Tropical rainfall is generated by a wide variety of
mechanisms, including monsoon, coastal and upper
troughs, tropical cyclones, convective and advective
systems. Several studies have been carried out in vari-
ous regions of Africa in order to link atmospheric vari-
ables to local rainfall. In Tanzania, Kabanda & Jury
(1999) found that for October–December rainfall is
linked to wind indices in the Indian Ocean and the
ENSO phase, while for March–May, only rainfall in
May is linked to the all-India rainfall index (Zorita &
Tilya 2002). In West Africa, Sahelian rainfall is linked
to sea-surface temperature (Thiaw et al. 1999).

In central Africa, the ITCZ is one of the phenomena
affecting precipitation. In Cameroon, the Cameroon
mountain chain, which extends from Mount Cameroon
(altitude: 4100 m) across the Adamaoua Plateau to the
northwest (Cameroon’s topography is displayed in
Fig. 1), is another local factor that greatly affects the
spatial distribution of rainfall. Moreover, Fig. 1 shows
examples of precipitation regimes in the country. The
wet equatorial climate with 2 rainy seasons (e.g. Eseka
[Stn 23]), the dry Sahelian climate with a single rainy
season (e.g. Maroua [Stn 1]) and intermediate situa-
tions (e.g. Betare-Oya [Stn 10]) are present. Note how
Ngambe (Stn 26) and Eseka (Stn 23) are close (approx-
imately 135 km apart), but exhibit quite different
annual cycles. A small peak is observed in May in the
annual rainfall cycles of most stations located south-
ward of the country during  MAMJ. During this season
the rains are relatively moderate: not enough to cause
floods, but sufficient to favour the sowing and the flow-
ering of many local and commercial vegetables. Thus,
perturbation of precipitation during this season has

direct consequences on the population, whose activi-
ties are mainly agricultural. July–October is known as
the main rainy season, with a pronounced rainfall peak
observed in July, August, September or October,
depending on the station.

Various mechanisms acting together or independently
cause this complexity. From this point of view, it seems
reasonable to group stations with similar rainfall prop-
erties before linking them to the general circulation.
Thus, different atmospheric variables can be identified
as sources of rainfall variability in different regions. From
the range of tools available for rainfall regionalisation
(e.g. cluster analysis and rotated empirical orthogonal
functions [EOFs]), we used self-organising feature maps
(SOFMs) because of their ability to perform classification
with different statistical measurements.

SOFMs (Kohonen 1989) are a subgroup of artificial
neural networks (ANNs) used to extract significant
patterns or features in the input data (Haykin 1994).
This methodology provides a mechanism for visualis-
ing any distribution of data on a 2-dimensional map,
while preserving the statistical properties of the input
distribution (Laha & Pal 2001). SOFMs have been used
in climatology for classification purposes (Malmgren &
Winter 1999, Cavazos 2000) and can achieve the same
results as obtained by other methods. Hewitson &
Crane (2002) recently used SOFMs to describe
changes of synoptic circulation over time, and they
discussed in detail their performance and utility in
climatological studies.

3.2. Application and results of the SOFM
methodology

The architecture of SOFMs in 2 dimensions consists
of 1 output layer of m0 × n0 nodes and 1 single input
layer with n nodes. Each node of the output layer is
connected to all nodes of the input layer through the
connection weights. The input data are arranged as a
matrix of dimensions m × n, where m and n are the
number of observations and variables, respectively.
These data are then mapped through an iterative pro-
cess onto the output layer. Each iteration consists of
randomly selecting an observation (input vector), find-
ing its ‘best-matching‘ node (the one having the small-
est Euclidean distance to the input vector) and up-
dating the connection weights not only for the
best-matching node, but also for nodes in its vicinity.
The updating formula is a function of the learning rate,
which decreases continually during the iterations. At
the end of the process, the output nodes are arranged
so that observations that share similarities in the input
space are mapped either through the same node or
through 2 nodes close to each other in the output layer.
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Observations whose mapped nodes represent a dense
area in the output layer can be interpreted as a group
of data with some similar properties.

The interpretation of SOFM clusters strongly depends
on the way in which the input vector is passed to the net-
work. In the case where m denotes the length of the time
series and n the number of grid points or stations, the
similarity will be looked for in the time domain, resulting
in the clusters indicating various stages of evolution
through time. On the other hand, if the transposed data
matrix is used, the similarity will be in the grid points or
station space, leading to clusters of stations or grid points
in which the time series varies in a similar way. Our data
were analysed using the latter approach.

The data we used are standardised seasonal anom-
alies of monthly precipitation from 1951–1990 re-
corded at 33 stations. Application of the SOFM
methodology to the data matrix leads to assigning the
various stations to Regions C1, C2 and C3, as displayed
in Fig. 2. Stations in Region C1 are located in the north
and west of the domain and are characterised by a uni-
modal annual cycle. In view of the high variability in
rainfall, as well as the altitude and latitude, the proba-
ble linkage here is the type of circulation producing
precipitation. This point will become clearer later.
Stations in Region C3, located in the south have a
bimodal annual cycle with a clear peak of rainfall in
May, when the Intertropical Front (ITF) is nearing its
northernmost position, and the area is located in Zone
D of the ITCZ (Hamilton & Archibald 1945). Stations in
Region C2 are in a transition zone between the pre-
ceding two. Note that differences in the annual cycle of
rainfall at the stations in Regions C1 and C3 are a co-
incidence and that both unimodal and bimodal annual
cycles are present in Region C2.

4. STATISTICAL DOWNSCALING—CANONICAL
CORRELATION ANALYSIS

Statistical downscaling utilises observations in order
to derive relationships between different spatial scales.
These relationships can be used to obtain small-scale
realisations from large-scale climate-change scenarios
provided by GCMs. We use canonical correlation
analysis (CCA), which attempts to find optimally cou-
pled anomaly patterns on both spatial scales (von
Storch & Zwiers 1999). CCA has found wide applica-
tion to precipitation modelling: von Storch et al. (1993)
applied CCA to winter Iberian rainfall; Gyalistras et al.
(1994) applied it not only to precipitation at some sta-
tions in Switzerland, but also to several other local
meteorological elements; and Busuioc & von Storch
(1996) applied it to monthly Romanian precipitation
amounts.

4.1. Methodology

The statistical downscaling model is constructed in 2
steps: First, we analyse the data on the GCM scale and
the local scale using EOF analysis (Lorenz 1956, Rich-
man 1986). The aim of this step is to discriminate
between the signal of interest and the noise. This
allows identification of the most important modes of
variability and in some cases substantial reduction of
the data dimensionality. Second, CCA is used to study
the correlation structure between local precipitation
and 2 large-scale meteorological variables during
MAMJ in Cameroon. This step is done separately for
each region found using the SOFM methodology.

4.2. Application and results

4.2.1. Model building

At the GCM and local scales, the number of EOFs
retained for further analysis did not exceed 8 and was
such that at least 80% of the total variance was
explained. To detect atmospheric variables which have
an influence on rainfall variability, all possible combi-
nations of 2 different large-scale fields, as listed in Sec-
tion 2, were used as predictors for CCA. The number of
the CCA pair entering each model is equal to the
dimension of the local-scale EOF spaces (i.e. 4 in the
case of C2 and 6 in the other 2 cases).

In order to test the numerous models, 3 validation
experiments, referred to as A, B and C, were con-
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structed. In Expt A the (EOF–CCA) model is calibrated
and validated for 1951–1990. In Expt B the model is
calibrated using 1951–1980 and validated over the
whole period, and in Expt C, the calibration and the
validation periods are 1951–1970 and 1971–1990,
respectively. These choices are guided by the short
length (40 yr) of the time series. The experiments are
carried out separately for each of the homogeneous
regions found by the SOFM methodology (see Fig. 2)
and for the region as a whole (denoted ALL). To assess
the performance of the various models, we calculate
the Pearson correlation coefficient, r, between the esti-
mated and observed time series and test its signifi-
cance at the 95% significance level. The best-perform-
ing models are selected to downscale the GCM
scenarios.

The skill of a particular predictor combination is
measured by means of the coefficient of determination,
r2, and the percentage of stations with significant r. In
the following discussion the percentage of stations
with a significant r will be abbreviated as PSR. Table 2
displays the predictors, results obtained from the
previously described selection process, and their r2

statistics for MAMJ. 

4.2.2. Results and discussion

Fig. 3 shows the first CCA patterns for each rainfall
region. The CCA rainfall pattern in Region C1 explains
37% of total variance. For comparison, the first rainfall
EOF for Region C1 (not shown) explains 43% of total
variance. At a large scale (Fig. 3a), the area is under
the strong influence of positive relative humidity and

southerly wind at the 850 hPa level
located around 5° N westwards of
Cameroon. The meridional wind in-
tensity increases northwards up to
5° N, then quickly decreases and is
reversed around 13° N. The area of
positive relative humidity can be
interpreted as the persistent presence
of humid air masses advected from the
Atlantic Ocean. Hence, deep convec-
tion producing precipitation in Region
C1 results from moisture advection by
the monsoonal flow.

This possible connection was further
explored by means of a composite
analysis involving local precipitation,
large-scale relative humidity and
meridional wind. The upper 2 panels
in Fig. 4a show the result of the analy-
sis. COMPOSITE+ is for the large-
scale composites made up of years

having exceptionally high precipitation totals at the
stations in Region C1 during MAMJ. COMPOSITE–
corresponds to the opposite situation, i.e. years having
considerably lower precipitation totals during MAMJ.
The composite analysis supports the interpretation
above, as the composites related to high precipitation
are similar to those related to low precipitation but
with a reversed sign.

In Region C3 the composite analysis also supports
the CCA results. The CCA (Fig. 3c) and COMPOSITE
patterns of specific humidity at 500 hPa and the wind
divergence at 700 hPa (Fig. 4b) show many similarities.
In COMPOSITE+ there is wind convergence around
5° N and relative humidity is positive over Cameroon.
This combination feeds convection and can explain the
enhanced precipitation recorded at the stations in
Region C3. The COMPOSITE–, which is connected to
drier episodes, shows positive divergence around the
region of interest. Taken together, these observations
point to convective phenomena as the key source of
rain in this area.

The CCA patterns of specific humidity at 700 hPa
and zonal wind at 500 hPa (Fig. 3b) show a complex
situation in the case of stations in Region C2 with a
south–north dipole for zonal wind and an east–west
dipole for specific humidity around the Equator. These
patterns do not allow a simple interpretation, and no
further investigation has been made using composites.
Furthermore, the results presented in Table 2 indicate
that rainfall in Region C2 is more weakly related to
large-scale circulation than in the other 2 regions. In
all cases, it can be observed that precipitation during
MAMJ is related to the state of the atmosphere below
the 500 hPa level and around 5° N.
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Expt Predictors Region Min. Max. Mean SD PSR ≥ 95%

A RH8 + v8 C1 0.23 0.51 0.39 0.09 100
SH7 + u5 C2 0.19 0.35 0.24 0.07 71
SH5 + divV7 C3 0.13 0.45 0.29 0.09 100
SH5 + rotV5 ALL 0.11 0.48 0.27 0.11 91

B RH8 + v8 C1 0.15 0.49 0.31 0.11 100
SH7 + u5 C2 0.14 0.27 0.20 0.07 71
SH5 + divV7 C3 0.16 0.50 0.31 0.11 100
SH5 + rotV5 ALL 0.10 0.49 0.27 0.11 91

C RH8 + v8 C1 0.19 0.38 0.26 0.11 43
SH7 + u5 C2 0.12 0.12 0.12 0.00 14
SH5 + divV7 C3 0.16 0.16 0.16 0.00 8
SH5 + rotV5 ALL 0.20 0.20 0.20 0.00 3

Table 2. Coefficient of determination, r 2, between observed and downscaled
precipitation for the little rainy season in Cameroon (MAMJ). Predictor combi-
nation and statistics characterising the distribution of r are shown. RH and SH:
relative and specific humidity; u and v: zonal and meridional winds; divV and
rotV: wind divergence and vorticity; subscripts 8, 7, 5: 850, 700 and 500 hPa 

pressure levels. PSR: percentage of stations with r significant at 95%
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The CCA models as calibrated in Expt A were used
to downscale rainfall under the present climate. Fig. 5
shows a direct comparison between observed and
downscaled rainfall anomalies for each region. It
appears that the CCA models capture the interannual

variability of precipitation in Regions C1 and C3 rea-
sonably well, although extreme values, particularly in
Region C3, are underestimated. The trends are well
reproduced in both Regions C1 and C3, although it has
to be remembered that the Expt A models were fitted
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over the entire validation period. Again, it can be seen
that there are difficulties in Region C2, where the
results are weakly matched to observation. These diffi-
culties may be associated with local-scale processes,
which are poorly resolved by the GCMs (Soon et al.
2001).

When the models are calibrated and validated over
independent periods (Expt C), there are only 5 stations
with significant correlations in the case of downscaling
after regionalisation (Table 2). However, in the case of
using one model for Cameroon, only 1 station shows a
significant correlation. This poor result of Expt C is
related to the failure to reproduce the low-frequency
variability in the observations, i.e. the relative wetness
of 1951–1970 compared with the drier 1971–1990, par-
ticularly evident in Regions C1 and C3 (see Fig. 5a,c).

When the models are calibrated and validated
over the same, non-independent, 20 yr period, i.e.
1951–1970 and 1971–1990, performance for both peri-
ods (not shown) is almost the same as for Expt A. This
again indicates that model skill is related to the
presence of low-frequency variability.

To assess the benefit of regionalising precipitation
data using SOFM analysis before downscaling, we
weight the mean performance (achieved by the pre-
dictor combinations actually used) with the percent-
age of stations with significant correlation at the 95%
level [i.e.

–
r2 × (PSR ≥ 95%)]. The results are shown in

Table 3. In this table, Region C1 (C2, C3) in ALL means
that the statistics are calculated for the stations in
Region C1 (C2, C3) with the results of the model run
for ALL. It appears that regionalisation of rainfall data
improves model performance in Regions C1 and C3,
but is of little help in Region C2. Although the model
performance is better in ALL than in Region C2, com-
paring the performance region by region shows that
local precipitation is better represented when running
the model separately for each region.

4.2.3. Downscaled local rainfall under climate change

The transfer functions derived from the EOF–CCA
approach (Section 4.2.2) are used to assess local pre-
cipitation changes for a future period. The GCM used
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Fig. 5. Time series of MAMJ rainfall averaged over the homo-
geneous regions (a) C1, (b) C2 and (c) C3. Black bars: 

observed; white bars: estimated from Expt A

Expt C1 C1 in C2 C2 in C3 C3 in ALL
ALL ALL ALL

A 0.39 0.24 0.17 0.16 0.29 0.25 0.25
B 0.31 0.23 0.14 0.13 0.31 0.27 0.25
C 0.11 0.00 0.02 0.03 0.01 0.00 0.01

Table 3. Model performance with regionalisation C1, C2, and
C3 and without (ALL). Values are  

–
r2 ↔ (PSR = 95%) (see text)
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is ECHAM4/OPYC3 (Roeckner et al. 1996) as de-
scribed earlier. Two IS92a scenarios are investi-
gated; the ‘GHG only’ run for 2011–2050 and the
‘GHG plus sulphate aerosols’ run for 2010–2049.
The predictor anomalies are derived by subtract-
ing climatological mean values, 1951–1990, calcu-
lated from the control experiment, from the values
calculated from the scenario runs. The predictor
anomalies are further normalised by the NCEP/
NCAR Reanalysis data standard deviation for
1951–1990. The models used were calibrated with
the set-up described in Expt A. Table 4 shows the
percentage difference between the climatological
values for the control period 1951–1990 and the
projected values for 2011–2050 (CO2 only) as well as
2010–2049 (CO2 + SO4).

The statistics describe each region separately. Fig. 6
shows the spatial distribution of precipitation changes
induced by the CO2 only and CO2 + SO4 scenarios. The
changes are expressed as percentages relative to the
control period 1951–1990. The largest changes appear
in Region C1 (up to 44% increase). This may be due to
a slight movement towards the east of the positive cen-
tre (Fig. 3) around 5° N, north of the relative humidity
and the meridional wind at 850 hPa. The rest of the
country (i.e. the Regions C2 and C3) shows both posi-
tive (increase) and negative (decrease) precipitation
changes ranging from –10 to +10%. The results in-
duced by the CO2 + SO4 scenario look quite similar to
those of the CO2-only scenario with differences in
magnitude up to ±8%.

To compare these changes to the uncertainty intro-
duced by the downscaling model, we selected in each
rainfall group the station that shows the most pro-
nounced change. The stations are Kaele, Betare-Oya
and Nanga-Eboko for Regions C1, C2 and C3 respec-
tively. Fig. 7 shows boxplots of observed, validated
(Expt A) and downscaled rainfall at the stations. The
variability of rainfall derived from the validation model
is always within the observed variability. This remains
true in the case of the downscaled scenarios.

The projected enhancement of precipitation in
Region C1 could induce positive repercussions on the
monthly discharge of the Upper Benue River in the
north of Cameroon, with direct impacts on agricultural
and human activities (Kamga 2001). Overall, most of
these changes lie within the observed variability. The
northernmost region that was hit by drought events
during the last 20 yr (see Fig. 5) shows pronounced
increases of the mean MAMJ precipitation totals.
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Region CO2 only CO2 + SO4

Min. Max. Mean SD Min. Max. Mean SD

C1 4.0 43.91 18.6 11.97 3.32 35.04 14.37 9.29
C2 –9.84 1.22 –3.99 3.49 –8.24 0.89 –3.38 2.82
C3 –1.58 0.78 –0.09 0.63 –1.26 1.48 0.43 0.68

Table 4. Statistics of downscaled local rainfall changes derived from
a GCM experiment under the IPCC IS92a scenario with CO2 only
and CO2 + SO4. Changes are expressed as percentages relative to 

the control period 1951–1990
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5. CONCLUSIONS

The results of a self-organising feature map (SOFM)
analysis indicate that precipitation in the little rainy
season (MAMJ) in Cameroon is subdivided into 3
regional groups. These groups are linked to different
modes of variability, which may be related to different
atmospheric mechanisms. Results of the EOF and CCA
techniques show that in part of the study domain rela-
tive humidity and meridional wind at 850 hPa influ-
ence the local precipitation during MAMJ. A compo-
site analysis suggests that this might be due to
advective processes. In the southern part of Cameroon,
the combination of 500 hPa specific humidity and
700 hPa wind divergence provides the best link to the
variability of local precipitation. In this case, the com-
posite analysis indicates a connection between rainfall
and convective phenomena. Projection of future pre-
cipitation based on 2 IS92a emission scenarios as simu-
lated by ECHAM4/OPYC3 indicates ‘trace gas only’-
and ‘trace gas plus sulphate integration’-induced
changes, relative to the 1951–1990 control period,
ranging locally from +44 to –10% and from +36 to
–9%, respectively.

This study demonstrates the possibility of downscal-
ing local-scale climate-change scenarios from GCMs
for Cameroon. The approach presented offers a possi-
ble strategy to produce these scenarios at low comput-
ing cost. Cameroon’s present-day climate ranges from
humid-equatorial close to the Atlantic Ocean to arid-
tropical in the vicinity of Lake Chad, in the Sahelian
zone. Hence, the results obtained may be relevant for
neighbouring areas in central Africa.
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