
&p.1:Abstract We have examined the relationship between
phenological data and concurrent large-scale meterologi-
cal data. As phenological data we have chosen the begin-
ning of the flowering of Galanthus nivalis L. (flowering
date) in Northern Germany, and as large-scale meteoro-
logical data we use monthly mean near-surface air tem-
peratures for January, February and March. By means of
canonical correlation analysis (CCA), a strong linear
correlation between both sets of variables is identified.
Twenty years of observed data are used to build the sta-
tistical model. To validate the derived relationship, the
flowering date is downscaled from air temperature obser-
vations of an independent period. The statistical model is
found to reproduce the observed flowering dates well,
both in terms of variability as well as amplitude. Air
temperature data from a general circulation model of cli-
mate change are used to estimate the flowering date in
the case of increasing atmospheric carbon dioxide con-
centration. We found that at a time of doubled CO2 con-
centration (expected by about 2035) G. nivalis L. in
Northern Germany will flower ~2 weeks and at the time
of tripled CO2 concentration (expected by about 2085)
~4 weeks earlier than presently.
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Introduction

Phenological data have been gathered on various plant
species to study the seasonal timing of life cycle events
(phases) (Schnelle 1955). The old practice provides a
valuable source of information about ecosystems. Fur-
thermore, phenological data are a powerful tool for
monitoring the important relation between ecosystems
and weather or climate. An important issue is the effect

of human activities of the atmosphere and estimation of
the possible consequences of climate change for ecosys-
tems.

General Circulation Models (GCMs) are used to study
global climate change. The typical grid sizes of these
models are ~500 km; smaller scales cannot be resolved
(Robinson and Finkelstein 1991). While GCMs are able
to reproduce ‘large-scale’ climate information to a good
level of approximation, there is general interest in find-
ing a link between large-scale information and local pa-
rameters. This will offer the possibility of estimating lo-
cal effects in the case of increasing atmospheric CO2
concentration.

One way to solve this problem is the use of statistical
downscaling. This method determines empirically a link
between a large-scale and a local parameter. Currently,
statistical downscaling is used to find the relationship be-
tween a climatological parameter and local ones such as
temperature or precipitation. The goal of the present
study is to investigate if it is possible to link a climato-
logical parameter with a non-meteorological parameter
such as the beginning of the flowering of a plant.

A condition for the application of the method is the
existence of a long homogeneous time series needed to
fit and confirm the statistical relationship. The statistical
downscaling is subdivided into four steps (von Storch et
al. 1993): (1) Find a large-scale parameter which con-
trols the local parameter; a good simulation of the large-
scale parameter in climate models is necessary to esti-
mate the local parameter for future changes. (2) Set up a
statistical relationship between these parameters. (3) Val-
idation of that relationship with independent data. (4)
Given a successful validation the local parameter can be
estimated for future changes with the large-scale param-
eter derived from GCM experiments.

In the present paper the near-surface air temperature
is taken as the large-scale parameter and the beginning of
the flowering of G. nivalis L. (flowering date) as the lo-
cal parameter. We have chosen results from ‘time-slice
experiments’ (see detailed description of the experi-
ment), conducted with a T42 atmospheric GCM (Cub-
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asch et al. 1995) as scenarios for the expected times of
doubled and tripled atmospheric CO2 concentration. This
yields the air temperature field which is used to estimate
future changes for the flowering date.

The following report gives detailed information about
the datasets used, including a description of the statisti-
cal model together with the fitting and validation of the
model. The resulting flowering dates for Schleswig-Hol-
stein are compared with observations from eastern Eng-
land. The model is applied to interpret the time-slice
GCM experiments for possible future changes of the
flowering date. The paper concludes with a summary of
the results and a discussion about the limitation of the
downscaling model.

Data

Phenological data

In this work the collection of phenological data from the
Deutscher Wetterdienst (DWD) is used. Since 1951
more than two hundred phases have been observed at

6

Fig. 1 Location of the datasets used. The hatched region shows
the area of the 74 stations in Schleswig-Holstein, the triangle de-
picts the Marsham estate in Eastern England and the 5°×5° grid-
ded air temperature observations (Jones and Briffa 1992) are indi-
cated by dots &/fig.c: Fig. 2 Flower of Galanthus nivalis L. &/fig.c:

357 stations in Schleswig-Holstein (for location see Fig.
1). The phase coinciding with the beginning of flower-
ing of G. nivalis L. (flowering data) is chosen to de-
scribe the first phenological season (Fig. 2). Spring
flower phases are strongly influenced by the air tempera-
ture of the previous month (Defila 1992). Seventy-four
stations with a ‘homogeneous’ spatial distribution are
selected (Fig. 3, Table 1) and the ‘30-days-error’ is cor-
rected after visual comparisons of neighbouring stations
where possible. (This relatively frequent error happens if
the observer confuses columns in the record sheet, so
that the flowering event is erroneously reported 30 days
later or earlier). In this dataset there is no recognizable
trend for the whole period from 1951 to 1990 (see Fig.
5). From 1971 to 1990 the observed dataset is almost
complete and this period is chosen to establish the statis-
tical relationship between flowering date and air temper-
ature. The remaining data are used to validate the speci-
fied relationship.

Air temperature data

We applied the gridded monthly 2 m-temperature based
on observations for the years 1870 to 1990 compiled by
Jones and Briffa (1992). The months January, February
and March are used and a region is selected extending
from 17.5°W to 22.5°E and from 37.5°N to 62.5°N (Fig.
1). The dataset is mostly homogeneous, although based
on an increasingly denser observational network. For the
following calculations we consider the concatenated Jan-
uary, February and March air temperature fields as one
large vector. For representation, this vector is split again
into three blocks, representing the January, February and
March air temperatures.
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Fig. 3 Distribution of the 74
selected stations in Schleswig-
Holstein &/fig.c:

Table 1 The 74 stations and
the local correlations between
the estimated and observed
flowering date anomalies for
the validation period. For some
stations, meaningful calculation
of correlations is not possible,
because of insufficient data.
However, the stations have
been used for the calculations
of empirical orthogonal func-
tions (EOF) and canonical cor-
relation analysis (CCA) &/tbl.c:&tbl.b:

1. Flensburg 0.63 26. Fahrenkrug 0.86 51. Hamdorf 0.82
2. Bistof 0.78 27. Sühlen 0.70 52. Hohn 0.67
3. Gelting – 28. Burg auf Fehmarn 0.79 53. Jübek 0.86
4. Sterup 0.78 29. Daenschendorf 0.72 54. Kropp 0.77
5. Daenschenhagen 0.86 30. Leck 0.77 55. Lürschau 0.74
6. Schuby 0.96 31. Bredstedt 0.72 56. Nortorf 0.75
7. Hohenlieth 0.75 32. Hollbüllhuus – 57. Bad Bramstedt 0.68
8. Rieseby 0.82 33. Heide 0.69 58. Rickling 0.62
9. Lübeck 0.78 34. Linden 0.42 59. Tensfeld 0.56

10. Ahrensbök 0.59 35. Meezen 0.78 60. Wyk auf Föhr 0.42
11. Bad Schwartau 0.81 36. Osterholzteich 0.68 61. Pellworm 0.81
12. Benz 0.73 37. Lockstedt 0.79 62. Dagebüll –
13. Niendorf – 38. Hohenlockstedt 0.83 63. Neukirchen 0.4
14. Duvensee 0.93 39. Albersdorf 0.75 64. Norder-Hever-Koog 0.76
15. Rondeshagen 0.78 40. Burg – 65. Friedrichskoog 0.55
16. Neustadt 0.68 41. St. Michelsdonn 0.77 66. Helse 0.67
17. Schönwalde 0.71 42. Lutzhorn 0.81 67. Wöhrden 0.60
18. Pfingstberg 0.72 43. Kaltenkirchen 0.92 68. Niedermarschaft 0.5
19. Kitzeberg 0.68 44. Öring 0.76 69. Roydorf 0.69
20. Klausdorf 0.59 45. Borstel-Hohenraden 0.95 70. Cuxhaven/Sahlenburg –
21. Lütjenburg 0.97 46. Wulfsdorf 0.72 71. Altenbruch 0.76
22. Raisdorf 0.62 47. Harksheide 0.73 72. Ihlienworth 0.52
23. Obendorf/Wankendorf 0.72 48. Wiemerskamp 0.76 73. Hüll 0.72
24. Bordesholm 0.74 49. Hamburg-Bergedorf 0.85 74. Öderquart –
25. Schierensee 0.81 50. Jordelund 0.77

&/tbl.b:

Statistical downscaling

Canonical correlation analysis of the large-scale
and the local parameter

The connection between the European air temperature
for January, February and March and the flowering date
was investigated by canonical correlation analysis
(CCA). For the mathematics of CCA, refer for instance
to von Storch (1995). Let T(x,K) denote the monthly
mean air temperature observed in the year K at the
space-time gridpoint x, i.e. x runs through the air tem-
perature observation stations and additionally for each

such station, through the months January, February and
March. The observations of the flowering date are de-
noted by B(y,K), where y represents the stations and K
the year. For the following calculations anomalies of
these parameters with respect to the fitting period are
applied.

Prior to CCA, the flowering date anomaly and air
temperature anomaly fields are first truncated to an ap-
proximation by the first few empirical orthogonal func-
tions (EOFs; see also von Storch 1995). In this procedure
the ‘characteristic structure’ or ‘main modes of variabili-
ty’ of the air temperature anomalies TS(x,K) and the
flowering date anomalies BS(y,K) are separated from the
noise and irrelevant details.



The CCA yields an expansion of the subspaces of
these fields

(1)

(2)

where Mi(x), Ni(y) is the i-th ‘CCA-pattern’ and αi(K),
βi(K) the i-th ‘CCA-time series’; z is the number of the
retained patterns and time series; ε is the unexplained
portion.

The time series fulfill the following orthogonality
conditions:

(3)

with ri describing the correlation between the pair of
time series.

α1(K) and β1(K) have the maximum possible correla-
tion, α2(K) and β2(K) have the next highest correlation
by being orthogonal to the former pair, and so on.

The explained variance for each gridpoint x is defined
as:

(4)

A parameter to measure the ‘importance’ of a pattern is
the amount of total explained variance

(5)

with L denoting the number of the gridpoints x.

Estimating flowering dates from the large-scale
parameter

To build up the downscaling model, the subspaces of the
air temperature anomaly fields T

→
S and of the flowering

date anomaly fields B
→

S are used. Let T
→′ and B

→′ be inde-
pendent data, which are assumed to have the same main
modes of co-variability as T

→
S and B

→
S. By analogy with

Eq. 1, T
→

S′ is projected onto Mi(x):

(6)

The reduced number of the retained pattern and time se-
ries is indicated by z′.

The error ε is minimized by the least square method
and a new time series αi′ is calculated. If αi′(K) is corre-
lated with βi′(K) in the same manner as αi(K) and βi(K),
it is possible to estimate βi′(K) according to Eq. 3:

βi′(K) = ri · αi′(K) (7)

Assuming that B
→′S and B

→
S share the same Ni(y) and disre-

garding ε provides an estimation for the anomaly of the
flowering date:

(8)

Fitting and validating the statistical model

CCA between the air temperature and flowering
date anomalies

Only the leading flowering date EOF-pattern and the
leading three air temperature EOF-patterns are selected
to represent the subspaces of the parameters. These pat-
terns explain 82% of the air temperature and 72% of the
flowering date variance for the years 1971–1990.

The higher indexed patterns are disregarded:

1. For the air temperature, each describes <5% of the
variance and hence these patterns are not important for
the characteristic structure.
2. In the case of the flowering date they show a more
complex structure. Only at a few individual stations can
the signal be relevant.

The CCA between these subspaces of the parameters
show a strong connection, with a correlation of 0.96
(Fig. 4). The CCA-pattern of the air temperature is posi-
tive everywhere with maximum values of 2.4° C over
central and eastern Europe and minimum values of
0.3° C over the North Atlantic and the Mediterranean.
Thus a gradient between maritime and continental influ-
enced regions is recognized. The explained variance
amounts of 60%. The CCA-pattern of the flowering date
shows a uniform field of early flowering dates with am-
plitudes in the range of −6 to −20 days and explains 72%
variance.

As the associated CCA-time series are normalized,
the characteristic amplitudes result from the patterns.
The typical flowering date anomaly is 13 days. If an air
temperature field, as in Fig. 4, right, is assumed for Janu-
ary, February and March in a particular year, the average
flowering date is 13 days earlier than ‘normal’. Equally a
negative air temperature field with the same strength
means an average delay in flowering date of ~13 days. It
is worth mentioning that the air temperature CCA-pat-
tern is very similar to the first EOF-pattern of the air
temperature.

These results and considerations indicate the possibil-
ity for estimating the flowering date variations from the
climatological air temperature fields.

Validating the estimated flowering date
with observational data

To verify the link found in the previous section the
flowering date anomalies are estimated from the
independent air temperature anomalies for the years 1870
to 1970 using Eqs. 6, 7 and 8. These estimated flower da-
ta are compared with the observed data from the DWD
for the years 1951 to 1970. In Fig. 5 the means from all
stations of the estimated and observed flowering date
anomalies are shown. The correlation between these data-
sets is 0.74. The local correlations for each of the 74 sta-
tions are calculated (Table 1), of which some are very
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high and others rather low. In Fig. 6 two stations are se-
lected to depict a less good correlation (Niedermarschaft,
station 68, with a correlation of only 0.5) and a good
match (Fahrenkrug, station 26, with a correlation of 0.86)
(for location see Fig. 3). The similarity at Fahrenkrug is
very good and at Niedermarschaft is still reasonable.

For further verification the flowering date observa-
tions are available for 20 stations in Northern Germany

from 1894 to 1900 (Knuth 1894, 1895, 1896–1899;
Hahn 1900). Since these stations are not the same as the
modern ones, we show the recorded and downscaled
flowering date anomalies averaged over all stations in
Fig. 5. The estimated and observed variations at the end
of the last century fit remarkably well.

Applicability to other places

Flower observations were made by the Marsham family
(Sparks and Carey 1995) from the village Stratton Straw-
less, Norfolk, Eastern England (for location see Fig. 1).
The date are compared with the estimated flowering date
anomalies for the time interval 1870–1958, for which we
have both air temperature data and flowering dates (Fig.
7).

The Marsham flowering date anomalies fit well with
the estimated anomalies after ~1915 (with a correlation
of 0.68), but before 1915 the similarity between recorded
and estimated flower data is marginal. We suggest that
the observational routine in Marsham may have under-
gone some changes in 1915 and that the observed plants
may have been located so that they have responded
mainly to specifically local conditions. We conclude in
this case that the distance between Eastern England and
Northern Germany is small compared with the spatial
scale of atmospheric processes influencing the flowering
date variations. This finding supports our choice of the
large-scale air temperature field as ‘predictor’ of the
flowering date.
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Fig. 5 Air temperature observations for 1870–1970 are down-
scaled to derive flowering date anomalies (solid line). These are
compared with flowering date observations (dashed lines) from
the Deutscher Wetterdienst for the years 1951–1970 and from
Knuth for the years 1894–1900. Furthermore the fitting period
(1971–1990) is added (shaded area). The time series depict anom-
alies in days &/fig.c:

Fig. 4 First pair of canonical correlation patterns of the flowering
date and the monthly mean air temperature for January, February
and March (from top to bottom) for the years 1971–1990. The
flowering date anomalies are given in days and the air temperature
anomalies for each month in °C; the coefficient times series are
correlated with r=0.96 &/fig.c:



Example of downscaling GCM data

Time-slice experiment

GCM air temperature data are selected from the results
of three ‘time-slice’ experiments (Cubasch et al. 1995).
Such numerical experiments are used to ‘downscale’

large-scale climate change information from a standard
coarse-grid fully coupled atmosphere-ocean climate
model, integrated with constant or continuously increas-
ing greenhouse gas concentrations, to a small scale. For
that purpose, the sea surface temperature and sea ice dis-
tributions from the coarse grid model are selected for
certain times, and used as lower boundary conditions in a
high-resolution atmosphere-only circulation model. This
atmoshere-only model is then run with greenhouse gas
concentrations specified according to the selected time-
slices, so that the atmosphere equilibrates to the speci-
fied lower boundary conditions and greenhouse gas con-
centrations. The system is corrected for systematic errors
in the sea surface temperature and sea ice distributions,
as found in the base run under present conditions.

This procedure has the advantage that atmospheric in-
formation is generated on relatively small scales. The al-
ternative, to run the high-resolution atmospheric model
and the ocean model under ‘transient’, i.e. continuously
changing greenhouse gas concentrations, is not feasible
to date simply because of the computational costs. 

We use the data from the high-resolution atmosphere
model as input for our statistical downscaling model.
Thus, our approach features two consecutive downscal-
ing steps, with a dynamical model to downscale from
global scale information to regional European-scale air
temperature, and as second step the statistical model to
derive from the European-scale air temperature field
flowering dates for Northern Germany.

In the present case, the base climate model operates
with a ‘T21’ horizontal resolution, corresponding to a
mesh size of approx. 500 km, and is forced with a con-
tinuous increase of greenhouse gas concentrations of
~1% per year (Cubasch et al. 1992). This is the ‘busi-
ness-as-usual’ scenario described by the International
Panel on Climate Change (IPCC 1990). The ‘high-reso-
lution’ is ‘T42’ with a mesh size of approx. 250 km. The
three times slices chosen are: present conditions, dou-
bling, and tripling of carbon dioxide concentrations in
the simulation decades 2030–40 and 2080–90. All inte-
grations were conducted for 30 years. This yields a sig-
nificant increase of the European air temperature field
for January, February and March (Cubasch et al. 1995).
The mean air temperature field for the 30 winter seasons
(January, February and March) increase by 1.2° C at the
time of doubled CO2 concentration and at the time of tri-
pled CO2 concentration by ~2.6° C. The air temperature
anomalies for the 2·CO2 and 3·CO2 experiments are ob-
tained by calculating the differences from the long-time
mean of the ‘control’ experiment (i.e. with present day
lower boundary conditions and greenhouse gas concen-
trations).

Estimated future flowering date anomalies

The European-scale air temperature anomalies from the
30 winter seasons obtained in the doubled and tripled
carbon dioxide concentrations integrations are used for
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Fig. 7 Estimated historical flowering date variations (solid line)
compared with the Marsham flowering date variations (dashed
line) from Eastern England (for location see Fig. 1). The time se-
ries depict anomalies in days &/fig.c:

Fig. 6 Estimated (solid line) and observed (dashed line) flowering
date anomalies for two selected stations, showing a good and a
less good correlation &/fig.c:



estimating plausible future flowering dates according to
Eqs. 6, 7 and 8. Thus, 30 flowering date estimates are
generated for the two scenarios. The results averaged
over all stations are shown as cumulative frequencies in
Fig. 8. The estimated flowering dates from the observed
air temperature anomalies for the years 1951–1980 is
added. In the present day climate, half of the flowering
dates are found before 28 February. The calculations
yield that at the time of doubled CO2 concentration the
average flowering date is 2 weeks (13 February) and at
the time of tripled CO2 concentration >4 weeks (25 Janu-
ary) earlier than the present-day flowering date.

Summary and discussion

The canonical correlation analysis reveals a strong con-
nection between the large-scale air temperature for Janu-
ary, February and March and the regionally influenced
flowering date. A physiologically plausible explanation
of this behaviour of the variables is obvious: positive air
temperature anomalies lead to an early flowering date
and negative air temperature anomalies result in a late
flowering date. The derived downscaling model is able to
reproduce flowering date anomalies with good corre-
spondence to the observed ones. Additionally, a compari-
son of the downscaled historical flowering date anoma-
lies and the observed dataset from Eastern England
shows that the flowering date is controlled by the chosen
large-scale air temperature field as climatological param-
eter field. Therefore flowering date anomalies may be
derived from GCM air temperature data.

The average flowering date on the 13 February in the
‘doubled CO2’ scenario is within ±1 standard deviation

of the observed flowering date for the last decades. Thus
the results of the doubled CO2 scenario are convincing
and can be viewed as plausible. 

However for the ‘tripled CO2’ scenario, the average
flowering date is found to be outside 2 standard devia-
tion interval of the observed data, so that we have to ask
ourselves whether the statistical downscaling model is
still valid.

First of all, to deal with the scenario of tripled CO2, it
may be useful to modify the statistical model so that it
takes into account not only the air temperature condi-
tions in January, February and March but also in Decem-
ber. Furthermore, we have to consider the plant physio-
logical arguments to assess the reliability of this result.
The flowering event represents the transition from the
vegetative to the generative state, which is controlled by
the seaonsal timing of air temperature. Thus the correct
‘interpretation’ of the temperature rise as the beginning
of spring is an important requirement for the formation
of the flowering date. For such an early date as 25 Janu-
ary, or even as early as 6 January (see Fig. 8), it is ques-
tionable whether there are changes in the plant behaviour
by other influencing parameters. In the current climate
the precipitation has only a small effect on the flowering
date. For climate change scenarios precipitation might
have a bigger influence. When we take into account that
the mean flowering date is 1 month earlier in the UK
than Northern Germany, the flowering date seems not to
be limited by other parameters. Therefore the air temper-
ature could still be an adequate predictor in the tripled
CO2 scenario.
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