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ABSTRACT

A strategy using statistically optimal fingerprints to detect anthropogenic climate change is outlined and
applied to near-surface temperature trends. The components of this strategy include observations, information
about natural climate variability, and a ‘‘guess pattern’’ representing the expected time—space pattern of an-
thropogenic climate change. The expected anthropogenic climate change is identified through projection of the
observations onto an appropriate optimal fingerprint, yielding a scalar-detection variable. The statistically optimal
fingerprint is obtained by weighting the components of the guess pattern (truncated to some small-dimensional
space) toward low-noise directions. The null hypothesis that the observed climate change is part of natural
climate variability is then tested.

This strategy is applied to detecting a greenhouse-gas-induced climate change in the spatial pattern of near-
surface temperature trends defined for time intervals of 15-30 years. The expected pattern of climate change is
derived from a transient simulation with a coupled ocean—atmosphere general circulation model. Global gridded
near-surface temperature observations are used to represent the observed climate change. Information on the
natural variability needed to establish the statistics of the detection variable is extracted from long control
simulations of coupled ocean—atmosphere models and, additionally, from the observations themselves (from
which an estimated greenhouse warming signal has been removed ). While the model control simulations contain
only variability caused by the internal dynamics of the atmosphere—ocean system, the observations additionally
contain the response to various external forcings (e.g., volcanic eruptions, changes in solar radiation, and residual
anthropogenic forcing). The resulting estimate of climate noise has large uncertainties but is qualitatively the
best the authors can presently offer.

The nuil hypothesis that the latest observed 20-yr and 30-yr trend of near-surface temperature (ending in
1994) is part of natural variability is rejected with a risk of less than 2.5% to 5% (the 5% level is derived from
the variability of one model control simulation dominated by a questionable extreme event). In other words, the
probability that the warming is due to our estimated natural variability is less than 2.5% to 5%. The increase in
the signal-to-noise ratio by optimization of the fingerprint is of the order of 10%-30% in most cases.

The predicted signals are dominated by the global mean component; the pattern correlation excluding the
global mean is positive but not very high. Both the evolution of the detection variable and also the pattern
correlation results are consistent with the model prediction for greenhouse-gas-induced climate change. However,
in order to attribute the observed warming uniquely to anthropogenic greenhouse gas forcing, more information
on the climate’s response to other forcing mechanisms (e.g., changes in solar radiation, volcanic, or anthropo-
genic sulfate aerosols) and their interaction is needed.

It is concluded that a statistically significant externally induced warming has been observed, but our caveat
that the estimate of the internal climate variability is still uncertain is emphasized.
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Detecting Greenhouse-Gas-Induced Climate Change with an Optimal Fingerprint Method

1. Introduction

Numerous model simulations predict a human-in-
duced change in the mean state of climate due to the
increasing concentration of greenhouse gases in the at-
mosphere. Many previous studies have tried to detect
such a change in observations, usually in global, an-
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nually averaged near-surface temperature data. The ob-
served 100-yr trend in global mean temperature has
been shown to be larger than can be explained by the
noise generated by a simple climate model (Wigley and
Raper 1990, 1991) or by a coupled ocean—atmosphere
general circulation model (CGCM; Stouffer et al.
1994), but it has not been possible to attribute the
change to the greenhouse gas forcing. Rather than pre-
selecting some arbitrary climate index (e.g., global
mean temperature ) for detection, several authors have
proposed the use of fingerprint methods, in which our
knowledge of the expected pattern of climate change
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is used to enhance the possibility of detecting and at-
tributing anthropogenic climate change (e.g., Barnett
1986, 1991; Barnett and Schlesinger 1987; Hasselmann
1979, 1993; Madden and Ramanathan 1980; Barnett et
al. 1991; Santer et al. 1993b). In a summary of the
state of the art of anthropogenic climate change detec-
tion, Wigley and Barnett (1990) concluded that at that
time the detection efforts were not yet statistically con-
vincing. The basic difficulties and uncertainties that im-
pede the detection of climate change are discussed in
Santer et al. (1993a). In two parallel papers, Santer et
al. (1993b, 1995a) tried to detect anthropogenic cli-
mate change using centered and uncentered pattern cor-
relations between the time-varying spatial patterns of
observed near-surface temperature changes and the
time-independent signal patterns derived from a num-
ber of equilibrium experiments and one transient re-
spornse experiment using atmospheric general circula-
tion models (AGCMs) coupled to a simple ocean. Here
“‘uncentered correlation’” refers to a correlation of the
pattern including the spatial mean (sometimes called
‘‘pattern similarity index,’’ Barnett et al. 1991); “‘cen-
tered correlation’’ refers to the correlation of deviation
patterns, where the spatial mean has been subtracted.
While the earlier studies considered only signals re-
sulting from a doubling of atmospheric CO,, more re-
cent work has also analyzed experiments with com-
bined CO,—sulfate aerosol forcing. If the spatial means
were subtracted, little evidence for time-increasing spa-
tial congruence between the simulated annual mean
greenhouse warming patterns and observed near-sur-
face temperature changes was found in either of the
two studies. However, in the case of the combined
CO,—sulfate aerosol forcing, the seasonal temperature
change patterns yielded multidecadal positive trends in
the pattern correlation statistics (Santer et al. 1995a).
Karoly et al. (1994) also found positive trends in the
pattern correlation between observed and simulated an-
nual and zonal mean vertical profiles of atmospheric
temperatures for equilibrium greenhouse warming ex-
periments. Santer et al. (1996b) found a similar agree-
ment using combined forcing simulations. A full sum-
mary of the findings of recent pattern-based detection
studies is given in the 1995 IPCC report (Houghton
and Meira Filho 1996; cf. Santer et al. 1996a).

Simulations with more realistic CGCMs have greatly
improved the two basic inputs needed for signal detec-
tion: they have provided estimates of the time-depen-
dent spatial pattern of the climate response under tran-
sient global warming conditions and the space—time
structure of the natural variability of the climate sys-
tem. With this new information, attempting a quanti-
tative statistical detection of greenhouse-gas-induced
global warming using advanced fingerprint techniques
has gained in feasibility.

We propose and apply in the following a method for
detecting anthropogenic climate change in accordance
with a general strategy described in Pennell et al.
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(1993). The method uses an optimal fingerprint ap-
proach introduced by Hasselmann (1979). In a later
paper, Hasselmann (1993) extended the optimization
formalism for spatially dependent signal patterns to the
general space—time-dependent case and to the simulta-
neous application of several fingerprints (e.g., to super-
imposed signals generated by the individual forcings of
different greenhouse gases and sulfate aerosols). Similar
methods have been proposed by Bell (1982, 1986) and
North et al. (1995). The optimal fingerprint strategy has
been previously applied to ocean climate change indices
derived from CGCM global warming simulations using
natural variability estimates from ocean GCM simula-
tions (Santer et al. 1995b). The authors found that al-
though the method is rather sensitive to the noise char-
acteristics used for the optimization, the multivariate op-
timal fingerprint approach yielded a marked detection
enhancement in the model world.

We apply the optimal fingerprint here to near-surface
temperature observations. CGCM simulations predict
accelerating trends of global mean temperature in the
second half of this century due to anthropogenic green-
house gas forcing (e.g., Cubasch et al. 1992, 1994,
1995) and, more recently, greenhouse gas and aerosol
forcing (Mitchell et al. 1995; Hasselmann et al. 1995).
Thus, rather than considering the 100-yr trend, as most
earlier investigations, we focus on the temperature
trends for time intervals of 15-30 years, which em-
phasize the recent warming signal. The chosen trend
lengths are a compromise between an emphasis on the
accelerating nature of the anthropogenic signal (re-
quiring a short time interval ) and the reduction of nat-
ural variability noise (requiring a large time interval).
We attempt to identify a model-derived greenhouse-
warming-only signal in the observed data; the exten-
sion to a signal including both greenhouse warming and
aerosol cooling is straightforward (Hasselmann et al.
1995). The greenhouse gas forcing is represented in
the model simulation in terms of ‘‘equivalent CO,”’
concentrations (Houghton et al. 1990), in which the
net radiative forcing contribution of all anthropogenic
greenhouse gases are expressed in terms of an in-
creased CO, concentration.

All a priori information regarding the anticipated
greenhouse warming signal is derived from model sim-
ulations. Special efforts are devoted to estimating nat-
ural variability since the outcome of any statistical sig-
nificance test is crucially dependent on the climate
noise estimate (see, e.g., Santer et al. 1995b). Esti-
mates of the natural variability of the climate system
are gained from both model and observational data. In
this paper, we refer to unforced variability associated
with the internal dynamics of the ocean—atmosphere
system as ‘‘natural variability.”” We are aware that, ide-
ally, ‘‘natural variability’’ would refer to all naturally
occurring climate fluctuations, also including naturally
occurring external forcings like volcanic eruptions or
solar radiation changes. However, at the present time,
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these have not yet been incorporated into long climate
model simulations. Uncertainties exist whether present
climate models are able to reliably simulate internal
climate variability on timescales of decades to centuries
and to the extent to which observations are influenced
by various possible external forcing mechanisms. The
observations since the last century will presumably
contain an evolving greenhouse gas signal and addi-
tionally the signatures of other anthropogenic forcings,
for example sulfate aerosols. We subtract an estimate
of the greenhouse gas signal from the observed data
using a simple response model that has been fitted to a
transient climate change simulation (Hasselmann et al.
1993; Cubasch et al. 1995; Tahvonen et al. 1993).

The structure of this paper is as follows. Section 2
describes the strategy for detecting anthropogenic cli-
mate change. In section 3, we apply this strategy to
near-surface temperature data using as a fingerprint the
spatial pattern of expected trends. In section 4, an op-
timal fingerprint is applied and the results are dis-
cussed, from which we infer that a statistically signif-
icant warming has occurred. Section 5 addresses the
question whether the warming can be attributed to an-
thropogenic greenhouse gas forcing. Our conclusions
are summarized in section 6.

2. Detection strategy

The first steps of the detection strategy are to choose
variables that permit a distinction between the signal of
anthropogenic climate change and the climate’s natural
variability (section 2a) and define a ‘‘guess pattern’’
representing the anticipated climate change signal in
terms of these variables (section 2b). The fingerprint
(which is a contravariant vector contrary to the covar-
iant guess pattern and signal pattern; Hasselmann
1979) is then either chosen as identical to the guess
pattern (‘‘guess-pattern fingerprint’’) or statistically
optimized ( ‘‘optimal fingerprint,’” section 2¢). Finally,
we test the null hypothesis that the observed climate
change originates from natural variability (section 2d).

a. Selection of climate change variables

Formally, all climate variables for which sufficiently
reliable observations and simulations exist are accept-
able for the fingerprint method. An overview of the
quality criteria for both observed and model data are
given by, for example, Wigley and Barnett (1990) and
Santer et al. (1991, 1993a), while investigations of
suitable variables for detection purposes are given in
Barnett et al. (1991) and Santer et al. (1994). If a large
set of variables is used, the optimal fingerprint method
automatically assigns higher weight to variables with
high signal to noise ratio. However, to simplify the
analysis, it is advisable in practice to reduce the number
of degrees of freedom by preselecting the variables on
the basis of prior estimates of signal to noise ratios.
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We use only one variable, near-surface temperature,
for the detection test. Near-surface temperature has
been observed for a comparatively long time, providing
reasonably good information on the time-dependence
of the observed climate change and on observed cli-
mate variability on decadal timescales. Also, results
from a control run and a time-dependent greenhouse
warming experiment using the Hamburg coupled
ocean—atmosphere model (Cubasch et al., 1992) sug-
gest that the signal to noise ratio is higher for this vari-
able than for other variables such as sea level pressure
(Santer et al. 1994).

We consider then a climate vector ¥ = (¥,---¥,)
in the ‘‘detection space’ V. In the climate change de-
tection method of Hasselmann (1993), the climate
change signal is regarded as a space—time-dependent
pattern, consisting of the values of the selected vari-
ables, in this case the (2 + 1) dimensional near-surface
temperature field T(x, r). The spatial representation
could be, for example, a (gridded) or irregular (sta-
tions) distribution or an expansion with respect to
spherical harmonics or EOFs (empirical orthogonal
functions); while the time-behavior of the variable
could be represented by average values over certain
discrete time intervals (for example annual mean tem-
peratures ) or by Fourier coefficients.

However, in the present paper we apply only a sim-
plified version of Hasselmann’s technique in which the
time dependence of the signal is represented locally as
a linear trend over some suitably chosen, relatively
short time interval 7. If 7 is much smaller than the
observation period, we can obtain an estimate of the
natural climate variability also from the observations.
We consider this an advantage that is worthwhile fore-
going the possibility of optimizing the fingerprint with
respect to the time-integration (cf. Hasselmann 1993).
The choice of the trend length of 15-30 years is a
compromise between obtaining a reasonable natural
variability estimate from the relatively short (~130
years) observation period on the one hand and the
stronger noise component in short trends on the other.

In practice, the original data must be truncated also
in space to some smaller dimensional space to apply
the optimal fingerprint method (Hasselmann 1979,
1993). We come back to this point below.

b. The fingerprint approach

Fingerprint methods use some univariate pattern
similarity index, or, more generally, a low-dimensional
detection vector to compare the observations with the
expected climate change pattern (see, e.g., Hasselmann
1979, 1993; Barnett et al. 1991). This operation can
also be understood as applying a filter to the observa-
tions, the optimal fingerprint representing an optimally
matched filter (Hasselmann 1979; North et al. 1995).
This has advantages compared with the two extremes
of trying to assess a significant climate change in the
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full climate variable space or simply using a mean
value.

» In general, the power of statistical significance
tests in the original selected n-dimensional detection
space V is very low. The significance of a given but
unknown signal embedded in a noise background de-
creases rapidly with increasing dimension of the space
(Hasselmann 1979; von Storch and Roeckner 1983;
Bell 1986). Fingerprint approaches reduce the detec-
tion problem to a univariate or low-dimensional prob-
lem in the detection variable.

¢ Contrary to approaches using, for example, a mean
value only, fingerprint methods use the full expected
pattern of climate change and thus increase the chances
of detecting an anthropogenic climate change and at-
tributing it to the assumed forcing.

Hasselmann proposed projecting the n-dimensional
space V onto a smaller number of variables by forming
the scalar products d, = f} ¥ of the vector ¥ in V with
a relatively small number of suitably selected finger-
prints f,, p = 1,2, - - -. In this paper, however, we shall
consider only a single fingerprint f [the general multi-
fingerprint case is discussed in Hasselmann (1979)
and, in the present terminology, in Hasselmann
(1993)]. This yields the single scalar-detection vari-
able:

d=1"", (1)

We will derive the optimal fingerprint pattern from
an uncentered signal pattern, that is, without subtrac-
tion of the spatial mean. Thus, the detection variable d
(for a nonoptimized fingerprint) is similar to the C(¢)
statistic used in Barnett et al. (1991) and in Santer et
al. (1993b, 1995a). As pointed out by Santer et al.
(1993b) and Barnett et al. (1991), such a statistic will
reflect the increase in global mean temperature in the
observations as well as the pattern correlation. The con-
tribution of the pattern mean to the detection variable
depends on the structure of the fingerprint and can
range from a 100% (for a spatially uniform fingerprint)
to zero (for a fingerprint with zero mean). In the case
of the greenhouse warming signal, the mean warming
is expected to be the dominant component of the green-
house-gas-induced climate change (North and Kim
1995). We take the point of view here that both the
global mean and the spatial structure of the deviation
about the mean contribute to the description of the
greenhouse warming signal and that using both in-
creases the chances of detecting climate change. We
discuss the contribution of each component to our re-
sults, as well as the implication for attributing a signif-
icant change to the greenhouse gas forcing later in the
paper.

From a statistical point of view, the fingerprint is
merely a tool. It is important only that it is defined a
priori, without reference to the observed data, in order
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to ensure a statistically independent detection test. A
fingerprint cannot be statistically ‘‘right’” or ‘‘wrong”’
but only ‘“‘well chosen’” or ‘‘inadequate.”” A good
choice of the fingerprint, based on the best available
knowledge of the selected variable space, increases the
chances for detection. We have chosen the fingerprint
from of the output of a greenhouse warming simulation.
It is important to note that if the observed data contain
responses in addition to the greenhouse warming sig-
nal, for example, an anthropogenic aerosol signal, a
fingerprint that is based only on the anticipated green-
house warming signal is not ‘‘wrong’’ but merely sub-
optimal.

¢. The optimal fingerprint

If the fingerprint shares some common features with
typical patterns of natural climate variability, the de-
tection variable will be contaminated by natural vari-
ability noise. A statistically optimal fingerprint, which
maximizes the signal to noise ratio, can be obtained by
rotating the fingerprint relative to the anticipated signal
pattern away from the directions of high noise.

Hasselmann (1979, 1993) showed that the square
signal to noise ratio

2
is maximized by choosing
f=C'g where C=¢e(¥P7T). 3)
Here g denotes the ‘‘guess pattern,”” which is as-

sumed to represent the expected signal of climate
change W, in V (possibly up to an unknown ampli-
tude); C is the covariance matrix of the random climate
noise variable ¥; d = W, d = fT¥, and d;
= fTW; are the detection variable for climate noise, the
observed climate change, and the pure signal of climate
change, respectively; and ¢ denotes the expectation.
The approach has been applied by Hannoschock and
Frankignoul (1985) to AGCM sea surface temperature
response experiments and by Santer et al. (1995b) to
the detection of ocean global warming in a model sim-
ulation study. , .

The relation (2) is more easily interpreted if ¥ is
represented in its EOF coordinates, so that the matrices
C and C! are diagonal. The optimal fingerprint is then
obtained by weighting each coordinate of the guess-
pattern fingerprint g; by the inverse of the associated
EOF-eigenvalue (variance) \;: f; = g;/\;, thereby en-
hancing components with small noise A,;.

The fingerprint is optimal only if the guess-pattern
fingerprint does indeed represent the correct signal of
anthropogenic climate change. An error in the guess
pattern, for example, due to noise in estimating the pat-
tern from a CGCM simulation, results in a suboptimal
fingerprint and thus in an underestimate of the true sig-
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nal to noise ratio. In this sense the detection method is
conservative.

We normalize to unity both the guess-pattern finger-
print and the optimal fingerprint before computing the
detection variable. Then signal and noise can be com-
pared prior to and after optimization by means of the
detection variable. In both cases, the value of the de-
tection variable can be used for estimating the ampli-
tude of the climate change signal (Hasselmann 1993;
North et al. 1995; Hegerl and North 1996, manuscript
submitted to J. Climate). Note that if the optimal fin-
gerprint is applied, the value of the detection variable
will decrease for the climate change signal. The benefit
of rotation is that the noise amplitude will decrease
stronger than the signal amplitude.

In practice, the covariance matrix C is unknown and
has to be estimated from observed and model data. This
introduces the following problems if the number of in-
dependent realizations of natural variability is small:

¢ The variance of high-indexed EOFs will be un-
derestimated (North et al. 1982; von Storch and Han-
noschock 1985), yielding unrealistically high finger-
print components for these EOFs. The dimension of the
covariance matrix C must therefore be kept small by
suitably truncating the analysis space. Of course, the
reduced phase space must still be able to represent most
of the anticipated signal. This is the case for the space
spanned by the dominant EOFs of the signal (Santer et
al. 1994) but not necessarily for the EOFs of natural
variability.

¢ The problem that the optimal fingerprint may be
rotated into a direction for which the natural variability
is poorly sampled, rather than genuinely low, can be
exacerbated if care is not taken to use statistically in-
dependent data. If the same variability information is
used for optimizing the fingerprint and for computing
the statistics of the detection variable, the signal to
noise estimate will be dominated by the emphasis of
the optimal fingerprint on the poorly sampled low-vari-
ability components. This may lead to a severe overes-
timate of the signal to noise ratio (Hannoschéck and
Frankignoul 1985; Bell 1986; Hasselmann 1993),
which is similar that the bias caused by using data to
fit a (e.g., statistical ) model and then testing the model
with the same data. We therefore chose independent
data for estimating the covariance matrix and for the
statistical test.

Having chosen the optimal fingerprint, we can now
compute the components needed for the statistical de-
tection test.

* The detection variable for the observed warming,
that is, for that part of the observed data that we expect
to be most representative of the anticipated anthropo-
genic climate change (e.g., in our application, the latest
observed temperature trend) is computed.

* Samples of the detection variable representing the
natural variability of the detection variable in the ab-
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sence of external forcing are also computed. To obtain
these, we use both observations and the output of sev-
eral ‘‘control’’ simulations without external forcing,
which are sufficiently long to resolve variability on all
relevant timescales. Present CGCMs use a rather coarse
grid for century-timescale simulations, which is inad-
equate for the description of the small-space-scale,
short-timescale features of natural variability. How-
ever, it is generally believed that models reproduce the
space—time statistics of natural variability on large
space and long time scales (months to years) reason-
ably realistic (Gates et al. 1992, 1993). The verification
of variability of CGCMs on decadal to century time-
scales is more difficult since the instrumental record is
relatively short, while paleoclimatic data are sparse and
often of limited quality (see, e.g., Santer et al. 1993a;
Barnett et al. 1996).

In estimating the natural variability from observed data,
we face the difficulty that the data also contains re-
sponses to diverse external forcing mechanisms. How-
ever, in some cases the forcing and the climate response
can be estimated, and if the response is assumed to be
linearly superimposed on the data, an estimate of the
response can be subtracted. An example for such a pro-
cedure is given in section 3.

d. Statistical test

The information gained in the previous steps of the
procedure is now combined in a statistical test. We test
the null hypothesis that the observed climate change
originates from natural variability. We apply a para-
metric statistic (Pennell et al. 1993), that is, we use a
statistical model—the Gaussian distribution—that is
appropriate for many climatological applications. If the
multivariate climate vector in the detection space V is
Gauss1an so is the linearly derived detection variable

= fT¥, where ¥ is a realization of natural variability.
In fact, since d represents an averaging process, the
Central Limit Theorem suggests that the Gaussian as-
sumption will probably be a better approximation for
d than for ¥ .

If the mean and the standard deviation ¢ are known,
we can choose a risk 1 — p, and calculate the smallest
interval ) for which

prob(d € Q) =p (4)

The null-hypothesis is then rejected if the detection
variable for the observed climate change, d = " ¥, is
not contained in Q. Since a positive value of the de-
tection variable (1) is expected if greenhouse warming
is occurring, a one-tailed test is performed. For exam-
ple, for Gaussian statistics the null hypothesis is re-
jected with a risk of 2.5%, if d > 1.96¢. This is the
risk level we choose for rejecting the null hypothesis
in this paper.
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If the parameters of the Gaussian distribution are es-
timated by a finite and .independent set of samples of
natural variability ; = f*™W;, i =1, - - - v, a ¢ test with
(v — 1) degrees of freedom can be performed. If the
samples are interdependent (i.e., autocorrelated) the
concept of the 7 test breaks down ( Thiebaux and Zwiers
1984; Zwiers and von Storch 1995). In this case the
statistics of the detection variable can be estimated by
Monte Carlo simulations (see section 4b). Since both
assumptions —that the statistic is Gaussian and that the
interdependence of the data can be modeled by an
AR(1) process—are hard to verify in practice, we also
compare the results of our detection approach to those
obtained if the sampling distributions were used.

If the null hypothesis cannot be rejected, we con-
clude that a statistically significant global warming can-
not be detected at the chosen confidence (risk) level.
If the null hypothesis is rejected, we have shown only
that the observed representation of climate change de-
viates significantly from (our estimate of) natural cli-
mate variability. In section 5 we discuss how this ob-
served climate change could be uniquely attributed to
a particular anthropogenic forcing, for example, to
greenhouse gas forcing. This requires detailed investi-
gations of the other competing mechanisms, which is
not attempted in the present paper.

3. Application to near-surface temperature

In the following, we apply the detection strategy to
trends of near-surface temperature. Following the ap-
proach outlined in the last section, we first discuss the
observed and model data and their time—space repre-
sentation (sections 3a,b). Then we choose the guess
pattern (section 3c) and attempt to assess the natural
climate variability (section 3d). In section 3e, a suit-
able small subspace is defined for computing the opti-
mal fingerprint.

a. Model and observed data

As observed data, we use the global gridded anom-
alies of monthly mean near-surface temperature data
compiled by Jones (Jones et al. 1991; Jones and Briffa
1992; Briffa and Jones 1993; Jones 1994a,b). The data
are in the form of anomalies with respect to the mean
for the years 1950—1979. The observations have been
assessed for both random and systematic errors (cf.
Jones et al. 1986a,b; 1991) and are generally consid-
ered to be reliable. Global-mean near-surface temper-
ature curves and the spatial pattern of temperature
changes over the last decade based on these data are
presented in the IPCC Scientific Assessment (Folland
et al. 1992).

The data are available on a 5° X 5° global grid; grid-
points with inadequate data coverage are indicated as
missing. We use the grid of the observed data as a com-
mon grid for both observed and model data (i.e., the
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model data are transformed to the 5° X 5° grid). The
data range from the year 1854 to 1994, with data cov-
erage changing in time. We analyze the data both with
respect to climate change and to assess the natural vari-
ability.

As model data, we have used the output of three
different CGCMs.

¢ The model ECHAM/LSG (in the following re-
ferred to as HAML) consists of the ECHAM atmo-
spheric general circulation model, cycle 1 (Roeckner
et al. 1992), and the ocean model LSG ( ‘‘Large Scale
Geostrophic,”” Maier-Reimer et al. 1993). ECHAM is
a spectral T21 model (with associated 5.6° Gaussian
grid) with 19 levels in the vertical. The LSG ocean
model has 11 layers in the vertical and a horizontal
resolution of 5° X 5° It includes an ice model with
simple rheology. Flux corrections are included in the
ocean—atmosphere coupling to avoid model drift (Cu-
basch et al. 1992). The ECHAM/LSG model has been
used in a number of climate change experiments (Cu-
basch et al. 1992, 1994, 1995) and in a multicentury
control integration with an equivalent atmospheric CO,
concentration fixed at the present day level (von Storch
1994).

¢ The model ECHAM2/OPYC (Lunkeit et al. 1995,
hereafter HAMO) features an updated version of the
ECHAM-atmosphere model (ECHAM2) and an
ocean model in isopycnic coordinates (OPYC, Ober-
huber 1993a,b). The spatial resolution of the atmo-
spheric model is the same as in the HAML model. The
ocean model has a vertical resolution of nine layers and
an explicit mixed layer; its horizontal resolution is
twice that of the atmosphere model, increasing toward
the equator. A Hibler-type ice model is included. Flux
corrections are applied as in the HAML. The model has
been used in a 210-yr control simulation and a climate
change experiment (Lunkeit et al. 1995).

¢ The GFDL-coupled CGCM consists of a spectral
AGCM on a 7.5° longitude X 4.5° latitude Gaussian
grid coupled to a primitive equation OGCM of a 3.75°
longitude X 4.5° latitude resolution. The models are
coupled using flux correction. The model and its vari-
ability are described in Stouffer et al. (1994 ), Manabe
and Stouffer (1996), and Delworth et al. (1993).

Our anticipated anthropogenic climate change signal
is taken as the output of a climate change simulation
with the HAML model (Cubasch et al. 1995). The ex-
periment, referred to as “‘EIN’’ (Early Industrializa-
tion), starts from the equivalent atmospheric CO; con-
centration for 1935 and uses the observed changes in
equivalent CO, concentration from 1935 to 1985 and,
for the remaining 100 years (i.e., for the model years
1986—-2085), the greenhouse gas forcing of the IPCC
Scenario A (‘‘business as usual,”” Houghton et al.
1990).

To estimate the internal variability of climate we use
as model data two 1000-yr control simulations with the
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HAML and GFDL models and the 210-yr control sim-
ulation with HAMO. All control simulations exhibit
complex variability on a wide range of space and time-
scales. A particular feature of HAMO is the strong con-
tribution to the total variance from a single event: a
strong global average temperature decrease of roughly
0.4°C in the eleventh decade (see Fig. 1b). This is
caused by an inflow of fresh Arctic surface water into
the North Atlantic, resulting in a decline in the ther-
mohaline circulation. It could conceivably be related to
observed events such as the Great Salinity Anomaly
described by Dickson et al. (1988 ) —although this in-
volved a shorter timescale (10—15 years) and a smaller
amplitude of the temperature anomaly-—or to a col-
lapse of the North Atlantic thermohaline circulation, as
produced in simulations of the Younger Dryas event
(Maier-Reimer and Mikolajewicz 1989; Manabe and
Stouffer 1988). A discussion of the HAMO event is
given in Lunkeit et al. (1995). In the context of the
present statistical evaluation, it is regarded as an ex-
treme event of internal model variability, even though
the event is of questionable realism.

b. Representation of the climate change signal

Transient greenhouse gas simulations predict an ac-
celerating greenhouse gas signal (Cubasch et al. 1992,
1994, 1995). Thus, we expect the temperature trends
to evolve from small trends in early industrial times to
increasingly stronger trends as we progress from the
- present into the future. This is caused by a combination
of the increase of the forcing and the delayed response
of the climate system (see section 3d).

We apply the detection strategy to 15-yr, 20-yr, and
30-yr linear trends. Rather than longer trends, those
relatively short trends emphasize the expected increas-
ing warming signal and enable us additionally to derive
an estimate of natural climate variability from the ob-
servations (section 2a). If the trend length 7 is smaller
than the total length of the climate change simulation,
we can regard the detection variable d as a slowly vary-
ing function of time. This has the advantage that we
can consider the gradual increase of the significance of
d with time.

The trends are calculated from annual mean values.
A linear trend is fit by least squares (regression line)
to each grid point and for each interval of the respective
trend length. For each computed trend we require that
the data gaps are at most one year (this implies, for
example, that at least eight individual years of data are
needed to compute a 15-yr trend) and that there is at
least one seasonal mean (i.e., at least one month) avail-
able per year, a procedure similar to that used by Parker
et al. (1994). The results were insensitive to using
more stringent criteria.

Grid points where observed trends are missing after
1949 have been excluded from the detection space.
This is a compromise between the following two con-
flicting requirements.
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* Nonrandom changes in data density as a function
of time, that is, the systematic absence of observations
in coherent areas of the globe for parts of the obser-
vation period, can cause errors in the estimate of the
statistics of the detection variable. An example of such
an effect will be given in section 4. Thus, we need a
natural variability dataset that is as complete a repre-
sentation as possible of the detection space.

* We wish to represent the distinctive features of the
anticipated greenhouse gas signal, per example, the
land —sea contrast and the cooling in the North Atlantic.
If we accept, for example, only data in the detection
space that have been continually observed since 1910,
the resulting data-covered area will be quite small. By
restricting the requirement of continuous coverage of
the detection space to the time since 1949, we miss
mainly observations in the high southern latitudes,
which have been regularly observed only recently and
where the model data are also less likely to be reliable.

We denote the resulting detection space of all grid
points with continuous observed trends since 1949 V.
This yields a description of temperature on a planetary
scale but excluding most Antarctic regions, parts of the
Arctic, parts of the Pacific, and few smaller areas in the
interior of Africa and South America (see Fig. 3): it
covers approximately 75% of the globe. Using slightly
different data coverage (e.g., by demanding continuous
coverage a decade earlier or later) yielded only slightly
modified results. The data have been weighted in pro-
portion to the areal coverage that they represent. Figure
1 shows the mean near surface temperature of V' for
the observations and for the three control simulations.

We anticipate that the latest observed 15-yr, 20-yr
and 30-yr trends, ending with the year 1994, contain
contributions from greenhouse-gas-induced climate
change. Figure 2a shows, for example, the latest ob-
served spatial pattern of 30-yr trends. Figure 2b shows,
in contrast, the observed 30-yr trend pattern for the ear-
lier time interval 1916—1945. This trend pattern, al-
though also characterized by a high mean temperature
increase, has a different spatial signature, with strong-
est warming in the northern high latitudes. We shall
discuss the impact of these differences in the warming
patterns on the detection variable in section 4.

c. Choice of the guess pattern

We define our anticipated pattern of anthropogenic
greenhouse warming as the temperature change be-
tween the decadal mean temperatures from 1986 to
1995 and the decade 2076 to 2085 for the EIN simu-
lation (Fig. 3). The pattern is very similar to the first
EOF of the EIN simulation, which (contrary to the sec-
ond and higher EOFs) explains the major proportion
of the variance of the simulation (90% of the last 100
years). Its principal component provides a description
of the warming trend in the model (Cubasch et al.
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FiG. 1. Time evolution of global mean near-surface temperature for the observations (a) for the ECHAM2/OPYC (HAMO) control
simulation (b) and for two 1000-yr control simulations with the GFDL and ECHAM/LSG (HAML) model (c), smoothed by an 11-yr running
mean. Note the different scales on the time axis. The dashed line in (a) shows the observed global mean temperature after the greenhouse
gas signal has been subtracted (cf. section 3d). All global mean temperatures are calculated using only grid points for which reliable observed

trends could be calculated since 1949 (cf. Fig. 3).

1995). Thus, our choice of the guess pattern should
yield a representative pattern for the temperature trends
expected in the context of greenhouse warming. The
use of a guess-pattern calculated from short trend pat-
terns of the EIN simulation is not advisable since short
trends from a single simulation are strongly contami-
nated by the overlying climate noise. Theoretical con-
siderations also show that such a noise contamination
of the guess pattern leads to deteriorated results (sec-
tion 2c; Hegerl and North 1996, manuscript submitted
to J. Climate).

We chose the EIN model simulation rather than earlier
simulations with the Hamburg CGCM, such as the sce-
nario A simulation of Cubasch et al. (1992), because the
EIN simulation had the more clearly developed green-
house gas signal (Cubasch et al. 1995). The pattern of
temperature change is nevertheless very similar in both
simulations (centered spatial pattern correlation of 0.8

globally, differences mainly in high southern latitudes not
represented in V'), and the detection results presented
here are essentially identical to the results using a finger-
print derived from the earlier scenario A simulation.
The warming patterns for both HAML simulations
are also similar to the patterns of anthropogenic green-
house warming simulations with other CGCMs. Table
1 shows the (centered and uncentered) pattern corre-
lations for summer and winter temperature changes be-
tween the earlier scenario A simulation and those cal-
culated with various other recent CGCMs. The models
used for these simulations are described in Gates et al.
(1992, 1993). All models agree fairly well in winter.
The lower correlations in summer result from the dif-
ferent behavior of the models in high latitudes and are
mainly caused by differing sea ice representations (Cu-
basch and Stossel 1994, personal communication). The
high latitudes are weakly represented in V', however.
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FIG. 2. Observed patterns of 30-yr trends for the periods 1965—1994 (a) and 1916—1945 (b) in degrees Celsius
per decade, calculated from the data of Jones and Briffa (1992, 1994b).

Thus, our guess-pattern is a reasonable representation
of the present model predictions of the spatial pattern
of greenhouse warming.

d. Estimating natural variability

In order to estimate the statistics of the detection
variable, numerous realizations ¥ of natural variability
are needed. We derive these realizations from the out-

put of climate model control simulations and the time
series of observations.

As a test of the order of magnitude of model vari-
ability, we compare a power-spectrum of a proxy time
series for decadal mean North Hemispheric (NH) sum-
mer land temperatures from 1400 to 1970 (Bradley and
Jones 1993) with the corresponding spectra of NH
summer land means from the instrumental observations
and from the model control simulations (Fig. 4). The
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FiG. 3. Expected pattern of greenhouse warming (i.e., guess pattern) derived from the early industrial climate change (EIN)
simulation (normalized). The pattern represents the difference between the decades 20762085 and 1986—1995 of the sirhulation.
The pattern is restricted to space points for which reliable trends could be calculated since 1949 from the observations.

instrumental observations and the proxy-data are cor-
related at 0.9 on the decadal timescale for the time of
overlap (see also Bradley and Jones 1993). The higher
power of the instrumental observations reflects the
higher variability of NH summer land temperatures in
the recent 100 years, especially associated with the
warming in the first half of this century (the warming
trend ending in the decade 1930-1949 is the strongest
trend over 30 years in the entire proxy-data time se-
ries). All time series have been detrended prior to the
analysis. In order to reduce the noise in the spectral
estimate, the time series are cut into segments of equal
length (two segments of 65 years for the observations,
five segments of 200 years for the long CTL simula-
tions, two segments of 105 years for HAMO, and five
segments of 11 decades for the first 550 years from the
paleo data), the resulting spectra are then averaged.
The results suggest that the variability of the climate
models (for NH summer land mean temperature) on
timescales of a few decades is quite different, but not
inconsistent, with the observations and that the instru-
mental data provide a rather conservative (i.e., upper)
estimate of natural climate variability on these time-
scales compared to the paleo data.

For a more quantitative estimate of climatic vari-
ability from observations, we must allow for the fact
that observations (and also the paleo data), in contrast
to control simulations, include responses to diverse nat-
ural and anthropogenic external forcing mechanisms in
addition to internal climate variability. Unfortunately,
our knowledge about the magnitude and time-evolution
of many of these forcings and their responses, for ex-
ample, of volcanic eruptions, solar variability, or an-
thropogenic aerosol forcing, is still insufficient to sub-
tract them from the observed data.

However, we have a reasonably reliable record of
CO, concentrations and can estimate the climate’s re-
sponse to the CO, increase from model simulations. We
apply a linear response model to estimate and subtract
the greenhouse warming pattern (Tahvonen et al.
1993) using only model-derived information about the
greenhouse gas response. Similar response models
have been used for global mean values by Sausen et al.
(1988) and Barnett et al. (1991).

We note that the model estimate of the greenhouse
warming signal, which is subtracted from the obser-
vations, depends on the estimates of the parameters of
the model, for example, on the sensitivity to green-
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TABLE 1. Winter and summer pattern correlations between climate change simulations with various CGCMs: the two climate models
ECHAM/LSG (HAML), ECHAM2/OPYC (HAMO), and Hadley Centre model (UKMO), the NCAR model (NCAR), the GFDL model
(GFDL) (for descriptions of the models see Gates et al. 1993), and the average over all model patterns. Climate change patterns are defined
as the deviations from the control simulation of the decadal mean at the time of CO, doubling (except for NCAR that does not reach doubling).
The upper diagonal gives results for the pattern correlation with spatial mean included [Eq. (8)], the lower diagonal for pattern correlation

with the spatial mean subtracted.

HAML HAMO UKMO NCAR GFDL Mean
‘Winter
HAML 0.82 0.82 0.72 0.85 0.91
HAMO 0.56 0.86 0.80 0.92 0.95
UKMO 0.57 0.58 0.73 0.91 0.94
NCAR 0.37 0.46 0.35 0.82 0.86
GFDL 0.64 0.68 0.75 0.50 0.98
Mean 0.81 0.81 0.83 0.64 0.89
Summer

HAML 0.64 0.66 0.67 0.72 0.82
HAMO 0.11 0.81 0.76 0.85 0.91
UKMO 0.27 0.42 0.73 0.89 0.92
NCAR 0.37 0.27 0.26 0.80 0.86
GFDL 0.32 0.44 0.67 0.36 0.96
Mean 0.59 0.65 0.80 0.55 0.82

house gas forcing, and is thus subject to considerable
uncertainty. If the models are erroneous, subtracting a
wrong signal would introduce an additional artificial
negative signal to the data, a procedure that should intu-
itively increase the variance. Also, the detection results
do not change substantially if we simply use the observed
trends without subtracting an estimate of the greenhouse
gas signal. We prefer the present method to using only
an early part of the observed data (which would presum-
ably be less influenced by a developing greenhouse gas
signal), since this would leave only a rather too short and
spatially sparse record. Moreover, the choice of the “‘cut-
off point”” would necessarily be arbitrary.

To establish the linear climate response model, we
assume, as in Cubasch et al. (1992), that the spatial
pattern of the climate change signal is the dominant
EOF e,(x, y) of the climate change simulation s(x, y,
t). Denoting the time-dependent evolution of the cli-
mate change signal by r(¢),

s(x,y, 1) =r(t)e(x,y), (35)
we assume that r evolves in time in accordance with
the following simple time-dependent response model

d

Y r(t) = uCe(r) — ar(t), (6)
where p is a constant defining the sensitivity of the
loading of the climate change signal to CO,-forcing,

and « is a memory term. The forcing of the model is
given by the logarithmic relation (Callendar 1938)

C(1)
CO ’

Ci(r) = ln[ (7)

where C(r) represents the CO, concentration that
drives the model, and C, is the preindustrial concentra-
tion. The model is assumed to start from an equilibrium
state (which is, of course, an idealization of the true
climate evolution but is appropriate for the CGCM
whose dynamics we wish to simulate).

The sensitivity and memory parameters are esti-
mated by fitting the model (6) to the response r(z) of
the EIN simulation. Both the concentrations and r(t)
are filtered by an 11-yr running mean in order to re-
move high-frequency fluctuations. The resulting con-
stants proved to be insensitive of the choice of the filter.

Figure 5 shows that the response r(¢) of the CGCM
is well represented by the model with the parameters p
=3.19 Cyr!', @ = 0.0244 yr'. Different constants,
(p = 854 Cyr!, @ = 0.0359 yr™'), are obtained
when the model is fitted to the observed time evolution
of the climate change signal since 1860 in response to
the observed CO, concentrations. The difference can
be explained at least in part by the relatively slow onset
of warming in the EIN-simulation (due to some com-
bination of ice equilibration problems and internal vari-
ability; cf. Cubasch et al. 1995), possibly also by un-
certainties in fitting the model to the observations due
to gaps in the early data-sparse years.

We now drive the resulting response model with the
observed CO, concentrations since 1860 (Keeling et
al. 1989) and estimate the observed r,,s(f) by integrat-
ing (6) with the forcing derived from the observed CO,
concentrations since 1860. The computed temperature
response field ry,(#)e,(x, y) is then subtracted from
the observed temperature patterns between 1860 and
1993. The residual field is our estimate of the natural
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FiG. 4. Comparison of observed and simulated power spectra of mean Northern Hemisphere summer land temperatures for the instrumental observations,
the model control simulations, and a proxy time series derived from paleoclimate data (Bradley and Jones 1993). Details in section 3d.

variability. It is possibly still contaminated by some
residual greenhouse warming signal and by the re-
sponse to external forcing other than CO,, for example,
aerosols or changes in solar insolation.

From the model control simulations and the observed
variability data we have thus obtained four time series
of patterns associated with natural variability data. The
associated global means are shown in Fig. 1 (the dashed
line in a is computed from the observations with the
greenhouse gas subtracted). For each time ¢ a spatial
field of linear trends can be calculated betweenr — [ + 1
and ¢, where / denotes the trend length (in analogy with
the examples of trend patterns for the observed fields
shown in Fig. 2). The projection of these data onto the
detection space V yields time series of overlapping trend
patterns, W, (), { = 1, -+ -, 4 of variability data. If the
fingerprint is simply set equal to the guess pattern (no
optimization ), all four time series can be used for esti-
mating the statistics of the detection variable.

To compute the optimal fingerprint, one of these
natural variability time series needs to be selected to

estimate the covariance matrix (3) of the climate
noise. The other three variability time series can then
be used to estimate the statistics of the detection vari-
able, computed using the optimal fingerprint. The use
of separate data for estimating the natural variability
covariance matrix and the detection variable statis-
tics is necessary to avoid a bias in the statistic, cf.
section 2c.

We use the HAML control simulation for computing
the variability covariance matrix. This choice has the
following advantages:

* Figure 4 and the results presented below indi-
cate that the internal variability of the HAML control
simulation is smaller than both the observed vari-
ability and the variability of the HAMO and GFDL
control simulations. Thus, an estimate of the statis-
tics of the detection variable gained from the latter
variability data will be larger than that obtained from
the HAML data, yielding a more conservative detec-
tion test.
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FIG. 5. Evolution of the climate change pattern (dominant EOF) for the EIN simulation (solid line).
The dashed line represents the loading simulated by a linear response model fitted to the EIN response.

e The long (1000 yr) HAML control simulation
yields enough samples for computing the optimal fin-
gerprint (after truncation to a small dimensional space,
see below).

e. Truncation to a small-dimensional space

Although we have a reasonably long record of vari-
ability data, the parameter space V' (consisting of
about 1500 space points) needs to be further reduced
in order to yield a reliable estimate of the noise co-
variance matrix. Note that the optimal fingerprint will
only be optimal within the truncated subspace. The
truncated space should be able to represent the signal
of greenhouse warming sufficiently and represent at
least the dominant features of climate noise.

Both criteria can be fulfilled by choosing the first
few EOFs of a greenhouse warming simulation, for ex-
ample, the EIN simulation. While the first EOF de-
scribes the time-evolving climate change signal, the
following EOFs exhibit no clear trends and are asso-
ciated with climate noise (see, e.g., Santer et al. 1994;

Cubasch et al. 1995). The EOFs have been computed
in the space V', disregarding the variance in regions
not covered by observations.

The choice of the number of EOFs represents a com-
promise between a stable estimate of the noise covari-
ance matrix (3) and the need for a sufficiently large
space for optimizing the fingerprint. If we demand at
least approximately three samples of 30-yr trends for
each dimension of the covariance matrix, the dimen-
sion of the space should not exceed 10 since we have
only 1000 years of noise data. Since we need to choose
the truncation level a priori before computing the signal
to noise ratios, we chose as a criterion the degree of
rotation of the optimal fingerprint relative to the guess-
pattern fingerprint. When the spatial dimension is too
low, the rotation will be very small, indicating that
there are not enough degrees of freedom for optimizing.
If the truncation level is too high, the rotation will in-
crease dramatically due to an underestimate of the vari-
ance associated with higher-indexed EOFs associated
with undersampling (section 2c¢), leading to an artifi-
cial emphasis on small-scale noise. The correlation (in-
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cluding the spatial mean) between the guess-pattern
and the optimal fingerprint is a measure of the strength
of rotation:

fTg
r= .
i1l el

Figure 6 shows the result for different truncation levels
and 20-yr and 30-yr trends (results for 15-yr trends are
not given since the rotation for these is small anyway;
see section 4). After a moderate decrease of the pattern
correlation with increasing number of EOFs (indicating
stronger rotation due to more degrees of freedom), a
more dramatic decrease occurs after eight EOFs for 20-
yr trends and 10 EOFs for 30-yr trends. Figure 6 sug-
gests that not more than eight EOFs should be used
(we consider it safer to use the smaller estimate), later
we see that the use of a different truncation level be-
tween four and 12 EOFs changes the results somewhat
but does not yield different conclusions. However, we
point out that errors in the determination of the optimal
fingerprint direction arising from errors in the estima-
tion of the variability covariance matrix (e.g. due to
undersampling) result only in a conservative underes-
timation of the signal to noise ratio relative to the true
(optimal) detection variable.

As truncated space V for the detection analysis we
shall consider in the following the first eight EOFs of
the EIN simulation. Subsequently, all data will be trun-
cated in terms of this space. As expected, the truncation
results in only a very small modification of the guess
pattern: around 99.8% of the variance of the guess-
pattern fingerprint in V' is recovered by V. To calculate
the EOF-coordinates for observed data before 1949
(where grid points in V' may be missing), a least-
square fit is used.

(8)

4. Results
a. The spatial pattern of the optimal fingerprint

The pattern correlation between the guess pattern
and the optimal fingerprint in the reduced eight-dimen-
sional detection space V is relatively high, especially
for short trend lengths (0.98 for 15-yr trends and 0.82
for 30-yr trends, cf. Fig. 6). This is due to the fact that
for the selected surface temperature data, the guess pat-
tern is already fairly orthogonal to the HAML vari-
ability noise (see section 2a and Santer et al. 1994).
Figure 7 shows the optimal fingerprint for 30-yr trends,
transformed back from the EOF space V into the grid-
point space V'. Compared to the original guess pattern
(Fig. 3), the fingerprint pattern exhibits a stronger
cooling in the upwelling areas of the North Atlantic
and slight cooling even in the North Pacific. Cooling,
or only slight warming, in this area due to changes in
the ocean circulation is predicted in many greenhouse
warming simulations (Cubasch et al. 1992, 1994,
1995). The optimal fingerprint emphasizes this pattern,
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Fi1G. 6. Uncentered correlation [Eq. (8)] between the guess pattern
and the optimal fingerprint (in the space spanned by the EOFs of the
EIN simulation) as a function of the truncation level. Circles: 20-yr
trends. Diamonds: 30-yr trends.

since it is associated with small natural variability (at
least for our representations of natural variability ). Ad-
ditionally, the optimal fingerprint differs from the guess
pattern over the large land masses associated with high
natural variability.

The optimal fingerprint patterns for the 20-yr and 15-
yr trends exhibit a similar, but smaller, enhancement of
the cooling in the upwelling areas and less pronounced
differences over the land masses. Optimal fingerprints
computed from the other variability data also empha-
sized the cooling in the North Atlantic. However, for
the optimal fingerprint computed from the covariance
matrix estimate derived from the GFDL climate vari-
ability data, the cooling area was shifted westward to
eastern North America. Nevertheless, the qualitative
similarity of the optimal fingerprints calculated from
the different natural variability data—but always using
the same small reduced EOF phase space—gives some
confidence that our estimate of the optimal fingerprint
is reasonably stable.

b. The evolution of the detection variable

Figure 8 shows the time evolution of the detection
variable d(t) = fT¥(¢) (where the time index ¢ denotes
the final year of each of the running trends) for the
observations, computed with the fingerprint set equal
to the guess pattern. Figure 9 shows the corresponding
results for the optimal fingerprint based on the HAML
variability data. Also plotted are the detection variables
computed for the EIN simulation (dashed line). Before
discussing the confidence intervals shown in the figures
and testing the null-hypothesis that the latest observed
trends (i.e., the 15-, 20-, and 30-yr trend ending in
1994) derive from our climate noise estimate, we point
out some features of the detection variable time series.
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Fig. 7. Optimal fingerprint calculated from the HAML variability data for the 30-yr trends. The optimal fingerprint
shows a more pronounced warming—cooling dipole in the North Atlantic than the guess pattern (Fig. 2).

* As expected, the evolution of the detection vari-
able for short trend lengths is noisier than for longer
(e.g., 30-yr) trends.

¢ The evolution of the detection variable in the ob-
servations is consistent with the model predictions.
However, the warming in EIN is retarded relative to
the observations. This may have several explanations.
First, there is still some small cold start error in the EIN
experiment, which does not have a true preindustrial
start date (see Cubasch et al. 1995). Second, some of
the slow initial rate of warming in the EIN integration
may be due to ice equilibration problems: the spinup
time of the coupled model was too short to yield a
quasi-equilibrium state for the ice volume (see also Fig.
5). Third, the EIN experiment is only one realization
of the response to the greenhouse gas forcing. Other
realizations with the same greenhouse gas forcing,
starting from slightly different (but equally plausible)
initial conditions, yield different manifestations of the
natural variability superimposed on the greenhouse
warming signal. This leads to an uncertainty of ap-
proximately one decade in the onset of the accelerated
warming (Cubasch et al. 1994). Further uncertainties
are introduced by the restriction of the forcing to green-

house gases only, and, of course, by systematic model
eITOrS.

The detection variable computed from the EIN sim-
ulation seems to increase until the middle of the next
century and then fluctuate about a constant value. This
indicates approximately constant temperature trends at
this time, that is, a constant rate of temperature in-
crease.

¢ For the 30-yr trends, the trend ending in 1945
(starting in the year 1916) is nearly as high as the
latest observed trend (we stress, however, that we
test the null hypothesis for the latest observed trend).
During this period (1916-1945) a strong global
mean warming lasting for about 30 years (cf. Fig. 1)
was observed, which has been described, for exam-
ple, by Parker et al. (1994). The NH summer land
mean proxy-data (Bradley and Jones 1993) indicate
that this was the strongest 30-yr warming trend ob-
served over the last 500 years (see section 3d). Fig-
ure 2b shows that this warming differs from the pres-
ent warming, especially in the high northern latitudes
near Greenland, in Siberia, and in the interior of Aus-
tralia. Part of this early warming may already be in-
fluenced by the climate change signal as estimated
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FiG. 8. Evolution of the detection variable using the guess-pattern fingerprint for the observa-
tions (solid line) and the EIN simulation (dashed line) for three trend lengths. The time refers to
the final year of the trend. The dot at the year 1994 for the 15-yr trends represents the value after
correcting for the cooling caused by the eruption of Mount Pinatubo and El Chichén (cf. section
4c). The 95% confidence intervals derived from three sets of variability data are indicated by
different shading. For the present one-tailed test (the signal is known to be positive) the positive
confidence limit corresponds to the 2.5% risk limit.
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F1G. 9. Same as Fig. 8, but with the detection variable calculated using the optimal fingerprint.
Since the optimal fingerprint has been computed from the HAML variability data, the 95% con-
fidence intervals are shown only for the two other datasets.

from the EIN simulation (see Fig. 1a): the detection servations (by 15% for the case that the fingerprint
variable was reduced when the model-estimated was setequal to the guess pattern and by 19% for the
greenhouse gas signal was subtracted from the ob- case of the optimal fingerprint).
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FiG. 10. Comparison between the detection variable calculated using the optimal fingerprint (full line), the guess-pattern
fingerprint (gray line) and a spatially uniform fingerprint (dotted line) for 30-year trends.

¢ Since all fingerprint patterns are normalized to
unity, the time evolution of the detection variable can
bé intercompared (section 2c¢). Figure 10 shows the
evolution of the detection variable for the guess-pattern
fingerprint compared to that of the optimal fingerprint
for 30-yr trends. The absolute value of the detection
variable is generally smaller for the optimal fingerprint
than that for the fingerprint set equal to the guess pat-
tern, but less so toward the end of the time series. This
is due to suppression of climate noise by the optimal
fingerprint, also evident in the wiggles of the time series
of the detection variable. The strong warming trend
ending in 1945 is decreased for the optimal fingerprint.
Additionally, a detection variable based on a uniform
pattern (reflecting global mean temperature trends) is
shown. It is quite similar to the detection variable for
the guess-pattern fingerprint. This illustrates our earlier
comment that the main contribution to the detection
variable comes from the global mean of the warming
pattern (section 2¢). The results of the optimal finger-
print, which is spatially less uniform (Fig. 7) disagree
stronger from the global mean value. The results for
15- and 20-yr trends also show a close relationship be-

tween the guess-pattern fingerprint and the global mean
change, the differences between the guess-pattern fin-
gerprint and the optimal fingerprint results are more
similar than for the 30-yr trends due to the greater pat-
tern correlation.

c. Significance of the latest observed trend

The outcome of the statistical test depends critically
on our estimate of the statistical properties of the de-
tection variable for natural climate variability. This is
based on four time series of overlapping trend patterns
W, (1),i=1, -+, 4 for each trend length (section 3d).
By computing the detection variable they are trans-
formed into univariate time series d; (¢).

We assume that the detection variable is Gaussian
with zero mean (see section 2d), that is, that there is
no long-term nonstationarity in the natural variability.
The estimates of the standard deviations for each esti-
mate of natural variability and for each trend length are
listed in Table 2 for the guess-pattern fingerprint results
and in Table 3 for the optimal fingerprint. The estimates
differ markedly. While the differences might be partly
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TaBLE 2. Properties of the detection variable using the guess-
pattern fingerprint for 15-, 20-, and 30-yr trends. The significance
levels are calculated separately for each of the variability datasets:
the observations with greenhouse gas signal subtracted (VOBS) and
the control simulation of HAML, GFDL, and HAMO (cf. Table 1).
The columns list (from left to right) the length of the time series
d(t), the decorrelation time T in years, the estimated standard
deviation o, the signal to noise variable S/N [Eq. (9)], and the risk
for rejecting the null-hypothesis that the latest observed trend
originates from natural variability based on a one-sided test [the risk
levels are computed taking the number of samples and their serial
correlation into account (cf. section 4c), thus they are higher than for
a perfectly known Gaussian distribution]. Asterisks (*) denote that
the null-hypothesis is not rejected at the 10% level.

Number

Guess-f of samples T o S/N Risk
VOBS 15 120 22 0.40 0.85 *
HAML 15 986 21 0.21 1.65 10%
GFDL 15 986 18 0.30 1.13 *
HAMO 15 195 38 0.42 0.81 *
VOBS 20 115 27 0.30 2.23 2.5%
HAML 20 981 35 0.15 4.57 1%
GFDL 20 981 28 0.21 3.30 1%
HAMO 20 190 88 0.35 1.94 10%
VOBS 30 105 49 0.19 2.83 2.5%
HAML 30 971 61 0.095 5.61 1%
GFDL 30 971 48 0.13 4.25 1%
HAMO 30 180 219 0.28 1.94 10%

attributed to the limited sample size and the strong con-
tribution to the variance from periods longer than the
trend interval, each of the three estimates of the stan-
dard deviation of the detection variable for either fin-
gerprint could also be biased for various reasons.

* The observed variability data (with the green-
house gas signal subtracted) include the response to
external forcing mechanisms unrelated to the green-
house gas forcing (e.g., volcanism, changes in solar
irradiance, and some anthropogenic aerosol signal)
and, due to uncertainties in the subtracted anthropo-
genic climate response (section 3d), possibly also
some residual greenhouse warming signal. These are
not present in the control simulations and should intu-
itively lead to greater variability in the observations.

* Additionally, the first half of the observed vari-
ability data may be biased by poor spatial representa-
tion during the previous century and the early decades
of this century. As mentioned in section 3b, if entire
areas (and not just random gridpoints ) are missing over
longer periods, the detection variable from such sparse
data might exhibit systematic errors. To estimate this
effect, grid points for which there were no observations
before 1900 were removed from the trend patterns of
the HAML control simulation in V'. The standard de-
viation calculated from these reduced fields was about
10% larger than for the full spatial representation.

® The variability of both long control simulations
with the HAML and the GFDL model is smaller than
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the observed variability. The HAML model yields
about 50% of the standard deviation of the observations
for all trend lengths, while the values for the GFDL
model are between 75% (for 15-yr trends) and 67%
(for 30-yr trends) of the observed level. To judge
whether the differences could be attributed to external
forcing in the observations, more must be known about
the magnitude and spatial patterns of the climate re-
sponse to such additional forcing mechanisms.

¢ The time series of the detection variable for the
HAMO data is dominated by one single event repre-
senting a sudden cooling in the eleventh decade asso-
ciated with a weakening of the thermohaline circulation
(see section 3a). The simulation is too short to reliably
estimate its variability excluding the extreme event.
Also, contrary to the other variability estimates, the re-
sulting standard deviation for the optimal fingerprint
was found to be dependent on the truncation level (see,
e.g., Table 4, section 4d). The results for the HAMO
variability data are accordingly treated with caution,
and the resulting confidence intervals are not shown in
Figs. 8 and 9.

As expected, all standard deviation estimates for the
optimal fingerprint (Table 3) are lower than for the
guess-pattern fingerprint (Table 2) due to the suppres-
sion of noise by the optimization. The decrease for the
30-yr trends ranges between a factor of 0.61 (for
HAMO) to 0.85 (GFDL); smaller decreases are ob-
tained for the 15- and 20-yr trends.

We regard the differences of the estimated standard
deviations for the different variability data as too large
to compute a meaningful common estimate of ¢ from
the pooled variability samples. We accordingly con-
sider the statistical distributions separately.

As outlined in section 3d, the sample size is too small
to use a Gaussian statistic with known variance for the
statistic of the detection variable (especially for the ob-

TABLE 3. Same as Table 2 but for the optimal fingerprint computed
from the HAML variability data. The columns list (from left to right)
the pattern correlation r [Eq. (8)] between the guess pattern and the
optimal fingerprint; 7, o, S/N same as in Table 2; and the ratio of S/
N for the optimal fingerprint and the nonoptimized case (the results
for the HAML variability data are not given since these data were
used for calculating the optimal fingerprint).

S/N
Optimal f r T o S/N Risk Increase
15 VOBS 0.98 23 039 091 * 1.07
15 GFDL 0.98 19 028 1.24 * 1.10
15 HAMO 098 21 040 0388 * 1.09
20 VOBS 0.95 27 027 246 25% 1.10
20 GFDL 0.95 27 0.19 3.46 1% 1.05
20 HAMO  0.95 75 030 227 5% 1.17
30 VOBS 0.82 36 012  3.66 1% 1.29
30 GFDL 0.82 49  0.11 4.01 1% 0.94
30 HAMO  0.82 118 0.17 266 25% 1.37
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TAaBLE 4. Sensitivity of the signal to noise levels S/N with respect to the choice of truncation level (in terms of the number of EOFs of
the EIN simulation used) and data used for the optimization. Results are listed only for 20- and 30-yr trends (the 15-yr trends are only
marginally significant and the rotation in that case is weak). The right column gives the results if the data from the GFDL CTL simulation
for are used for estimating the covariance matrix. An asterisk (*) denotes a decrease in signal to noise ratio due to the optimization.

Optimal f S/N:4 S/N:6 S/N:8 S/N:10 S/N:12 GFDL, 10
20 VOBS 2.40 2.49 2.46 233 2.33 2.28

20 HAML 4.23%
20 GFDL 3.48 3.48 3.46 3.17% 3.17*

20 HAMO 2.16 2.25 2.27 1.96 2.01 1.94*
30 VOBS 3.36 3.76 3.66 3.62 324 2.21%*
30 HAML 4.04*
30 GFDL 4.44 4.17* 4.01* 3.74% 3.76*

30 HAMO 2.44 2.61 2.66 2.27 2.28 1.90*

served variability). We use Monte Carlo simulations
for estimating the error associated with estimating the
variance from a finite-length, autocorrelated time se-
ries. Due to the additional uncertainty introduced by
the variance estimate, the confidence interval will ex-
ceed that for a Gaussian distribution of the same but
known standard deviation. We assumed that the d(t)
time series can be approximated by an AR(1) process.
Several 10 000 experiments were made in order to es-
timate the statistical distribution of the signal-to-noise
variable

S/N =dlo, (9)

in which the standard deviation was estimated from a
random AR (1) time series whose length and autocor-
relation scale was computed from the d(r) time series.

o
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FiG. 11. Cumulative sampling distribution of the detection variable
for the optimal fingerprint for 30-yr running trends from the obser-
vations with greenhouse gas signal subtracted. The smooth line in-
dicates the Gaussian distribution with the same standard deviation.
In this case the sampling distribution is derived from very few in-
dependent samples. The value of the detection variables at the inter-
section of the horizontal lines with the sampled and Gaussian distri-
butions defines the 97.5% significance level, while the vertical line
represents the 97.5% confidence level estimated from Monte Carlo
simulations. The value of the detection variable for the latest ob-
served temperature trend pattern is indicated by the gray vertical line.

The 95% two-sided confidence intervals based on the
Monte Carlo simulations are shown in Figs. 8 and 9,
they are higher than 1.960 (perfectly known Gaussian
noise, section 2d), for example, 2.40 for 30-yr trends
and o estimated from the observed variability.

Figure 11 shows the cumulative distribution function
for an ideal Gaussian distribution compared to the em-
pirical distribution functions calculated from the 30-yr
samples derived from the observed variability. The
sampling distribution in this case is derived from ex-
tremely few independent samples, thus, the disagree-
ment between the two distributions is not surprising.
The skewness to positive values of the detection vari-
able might indicate a residual greenhouse warming sig-
nal in the observed data (see also Fig. 1). The inter-
section of the curves with the value of 0.975 at the
vertical axis defines the (one sided) 97.5% confidence
limit of the distribution. The vertical line determines
the 97.5% confidence level estimated from the Monte
Carlo tests. In the cases shown and also in all other
cases, the Gaussian and Monte Carlo simulated confi-
dence limits were conservative (i.e., higher) relative to
the use of the empirical sampling distribution. For the
1000-yr simulations, the estimated distribution func-
tions were nearly indistinguishable from those for the
ideal Gaussian distribution. We would like to empha-
size that there is substantial uncertainty in the estimate
of the statistics. However, Fig. 11 and Table 3 indicate
that the detection variable for the optimal fingerprint is
well beyond the 2.5% significance level for the latest
observed trend, indicating that the uncertainty seems
not to be critical in that case.

For all trend lengths, the detection variable for the
latest few observed trends extends farther from the
noise (as expressed by the confidence intervals in Figs.
8 and 9) in the case of optimal fingerprint than for the
guess-pattern fingerprint case. The benefit of rotating
the fingerprint can be expressed by the ratio of the sig-
nal to noise ratio S/N (9) for the optimal fingerprint to
that for the guess-pattern fingerprint (cf. right column
in Table 3). The increase is highest for the 30-yr trends
(~1.3), which exhibit the strongest rotation expressed
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by the smallest pattern correlation. An exception are
the GFDL variability data (0.94). Although the vari-
ance of the natural variability data is also decreased in
this case through application of the optimal fingerprint,
this effect is too small to overcome the decrease of the
amplitude of the detection variable. This results in a net
decrease of S/N for the GFDL model (cf. section 2¢)
that may be associated with a different variability struc-
ture of the GFDL model compared with the HAML
model (which was used for optimizing and for trun-
cation). A different reaction of different variability
data on optimization was also found in a model study
(Santer et al. 1995b).

For all variability estimates, increases in S/N ranges
from 1.1 to 1.2 for the 15-yr and 20-yr trends. In sum-
mary, optimization generally leads to an improvement
in S/N rates.

The results of a one-sided statistical test of the null-
hypothesis that the latest observed trend is associated
with natural variability, as expressed in each dataset for
natural variability, are summarized in the Tables 2 and
3 (column ‘‘risk’’). The latest 15-yr trend is relatively
insignificant, in contrast to the 15-yr trend ending in
1988 (Figs. 8, 9). We suspect that the lower atmo-
spheric cooling in 1992 and 1993 caused by the erup-
tion of Mount Pinatubo in 1991 has reduced the latest
15-yr trends, whereas it had less influence on the longer
trends. Since the detection variable contains a strong
component of the spatial mean (see section 5), the ef-
fect of Pinatubo and El Chichén on the latest 15-yr
trends can be approximately estimated by subtracting
the estimated global mean of the volcano-induced tem-
perature change (see Jones 1994a) from each grid
point. The resulting value of the detection variable for
the latest observed trend is indicated by the dots in Figs.
8 and 9.

The detection variable (for both the guess-pattern
fingerprint and the optimal fingerprint) for the latest
20-yr trend deviates from natural variability as esti-
mated from the GFDL and observed variability data
with an estimated risk of less then 2.5%. In the case of
the HAMO variability, the risk is 5% for the optimal
fingerprint, as compared with 10% for the guess-pattern
fingerprint.

For the 30-yr trends the detection variable deviates
from natural variability as estimated from the GFDL
and observed variability data with an estimated risk of
less then 2.5% for the guess-pattern fingerprint and
only 1% for the optimal fingerprint. For the HAMO
variability the risk is less than 2.5% for the optimal
fingerprint as compared with 5% for the guess-pattern
fingerprint.

d. Discussion

Our estimate of the significance levels are dependent
on a number of assumptions and conditions.
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e It is assumed that our estimate of the statistics of
the detection variable is correct, that the detection vari-
able is Gaussian and that in estimating its variance, the
time series can be modeled approximately by an AR
(1) process. We consider the uncertainty introduced by
this assumption small compared to the limitations of
the natural variability data.

¢ The results are not sensitive to the choice of vari-
ability datasets or truncation level used for optimizing:
the dependencies are indicated in Table 4. The central
column (bold face) corresponds to the standard case
(eight EOFs, optimization with the HAML control sim-
ulation data, cf. section 3e). The left—right columns in
Table 4 give the results if the optimization is performed
in a smaller higher dimensional space (spanned as be-
fore by EOFs of the HAML model EIN simulation).
As expected from Fig. 6, the results deteriorate for 10
or 12 EOFs, but the results of the statistical test (i.e.,
the significance levels) change only in the case of the
HAMO simulation. The optimal fingerprint was also
computed from the GFDL data (using a truncation to
10 EOFs of the EIN simulation). The results in this
case are not as well-behaved, the signal to noise vari-
able decreasing relative to the nonoptimized case for
all 30-yr trend data and for some data for the 20-yr
trends. This indicates differences in the variability
structure between the GFDL and the HAML. model.

e It is assumed that the variability data used for es-
timating the statistics of the detection variable represent
the natural variability of climate correctly. This is the
biggest uncertainty of our study, due to the uncertainty
as to whether the models simulate climate variability
realistically on decadal timescales, the relatively short
and spatially sparse time series of the observations, and
the procedure of subtracting the greenhouse warming
signal from the observations. However, even without
the subtraction of the greenhouse warming signal from
the observations, the latest 20-yr and 30-yr trends are
found to be significant at the 5% level relative to the
observed variability in such trends since 1860. More
work with paleoclimatic data may be useful in assess-
ing the reliability of model noise on the decadal to cen-
tury timescales.

5. Attribution

Although we have been able to statistically identify
a climate change signal at an estimated 2.5% signifi-
cance level (with uncertainties inherent in the estimate
of natural climate variability), we have not yet estab-
lished that this signal is in fact caused by an increase
in greenhouse gas concentrations.

To attribute the observed unusual warming to an-
thropogenic greenhouse gas forcing, we must rule out
the possibility that other natural or anthropogenic forc-
ing mechanisms, such as volcanic activity, changes in
solar radiation, aerosols, or a superposition, together
with possible nonlinear interactions of these mecha-
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nisms, could cause a similar response of the climate
(Santer et al. 1993a). We do not consider these alter-
native forcing mechanisms in detail, although most ap-
pear improbable.

¢ Decadal changes in solar radiation are generally
believed to cause only a small response of the climate
(Hansen and Lacis 1990). However, longer timescale
solar variability may be stronger. Estimates of solar
variability indicate an increase of solar radiation in the
first half of this century and since about 1960 (Hoyt
and Schatten 1993). More reliable information on
changes in solar radiation and the climate’s response
pattern to it is needed to provide an estimate of the
influence of solar variability on the observed warming.

® Major volcanic eruptions are relatively infrequent
and cause a decrease of the global mean near-surface
temperature on the timescale of only a few years. Al-
though it has been speculated that the clustering of vol-
canic eruptions may influence the temperature vari-
ability on longer timescales, it is difficult to see how
recent volcanic eruptions could have induced the ob-
served global warming signal. For an overview over
both solar and volcanic forcing influences see Crowley
and Kim (1993).

¢ The direct albedo effect of anthropogenic aerosols
alone causes a net global cooling and can therefore ob-
viously be ruled out as a global warming candidate.
However, recent climate change simulations including
both anthropogenic greenhouse gas and aerosol forcing
yield modified signal patterns. In two rather similar
transient simulations with CGCMs, Mitchell et al.
(1995) and Hasselmann et al. (1995) found that the
warming in the north hemispheric midlatitudes is re-
duced due to the aerosol cooling. The same features
were found in analogous equilibrium AGCM experi-
ments; Santer et al. (1995a) found an enhanced cor-
relation between the simulated and observed pattern of
surface temperature changes in summer and autumn,
the pattern correlation increasing with time. They con-
clude that at present an enhanced greenhouse warming
signal alone may be difficult to detect in observed tem-
perature data by a centered pattern correlation statistic
since anthropogenic sulfate aerosols may have partially
obscured the greenhouse warming signal.

We would have more confidence that the observed
unusual warming can be uniquely attributed to anthro-
pogenic greenhouse gas forcing if the observed warm-
ing would agree with the greenhouse gas signal also in
terms of pronounced features of its the smaller-scale
spatial structure. This is, however, not the case. The
single most pronounced feature of the observed climate
change is the rise in global mean temperature. Figure
12 shows the (centered) pattern correlation between
the guess-pattern fingerprint and the patterns of ob-
served 20- and 30-yr trends. Although the pattern cor-
relation between the guess-pattern fingerprint and the
observed trend patterns is positive (around 0.3 for re-
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cent 20- and 30-yr trends), it is relatively small. This
agrees qualitatively with previous studies by Santer et
al. (1993b, 1995a) in which the correlation between
various model-predicted equilibrium signal patterns (in
response to present CO, concentrations) and observed
time-dependent patterns of near-surface temperature
change showed no evidence of sustained positive trends
over recent decades. There was thus no evidence that
the mean-subtracted signal patterns (predicted by five
different earlier GCMs without coupling to ocean
GCMS) were becoming more evident in the observed
data as the global mean temperature increased.

Figure 12 also shows that the correlations between
the observed and model-simulated trend patterns in our
case are nevertheless consistent with the EIN model
prediction. Contrary to the 20-yr trends, which appear
too noisy to sustain a high spatial correlation, the model
predicts that the 30-yr trends will increase further if the
warming has in fact been caused by the greenhouse gas
forcing alone. However, we have not attempted here to
correct for the contamination by aerosol forcing. In this
sense our fingerprint is presumably still rather far from
optimal.

In summary, although the observed climate change
is consistent with the model prediction and we offer no
other convincing explanation for the climate change,
we cannot at this stage uniquely attribute the observed
climate change to the greenhouse gas forcing. To rig-
orously rule out other possible climate change mecha-
nisms, these need to be specified and compared with
greenhouse forcing, for example, using a multiple fin-
gerprint technique (Hasselmann 1993 ). Preliminary re-
sults of a two-fingerprint approach using a CO, only
and a CO, + Aecrosol optimal fingerprint show that
such a method is able to distinguish between two rather
similar patterns (in terms of the dominant annual mean
climate change signal; Hasselmann et al. 1995) and that
the observations agree substantially better with the
combined forcing pattern.

6. Conclusions

We have shown that the use of a statistically optimal
fingerprint suppresses natural variability noise as rep-
resented by both model internal variability and ob-
served climate variability and generally enhances the
signal to noise ratio. We find that the latest observed
30-yr trend pattern of near-surface temperature change
can be distinguished from all estimates of natural cli-
mate variability with an estimated risk of less than 2.5%
if the optimal fingerprint is applied. This also holds for
the latest 20-yr trend with the exception of the HAMO
variability data (which has problems, however, see be-
low). The latest observed 15-yr trend, in contrast to the
maximal 15-yr temperature trend between 1974 and
1988, is not unusually strong. This is in part due to the
global cooling caused by the eruption of Mount Pina-
tubo and to noise contamination, both of which have a
stronger influence on shorter timescales.
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Fic. 12. Centered pattern correlation between the guess pattern and the observed 20- and 30-yr trend patterns (full line)
and the trend patterns computed from the EIN simulation (gray line).

The greatest uncertainty of our analysis is the esti-
mate of the natural variability noise level. Both the ob-
served and model simulated datasets used to estimate
the internal climate variability have limitations.

* The observational data are short (~140 years) and
very sparse in the early years. Furthermore, even after
subtraction of the estimated greenhouse warming con-
tribution, the observations may still incorporate the ef-
fect of a residual greenhouse warming signal and other
external forcing mechanisms (e.g., volcanic and an-
thropogenic aerosols, solar variability).

¢ The variability in decadal to century timescales of
the HAML simulation seems to be smaller than that of
the GFDL simulation; both models exhibit less vari-
ability than the observations.

e The variability in the HAMO simulation is
strongly affected by a single, possibly unrealistically
strong event associated with a change in the ocean cir-
culation. Because of the relatively short integration
time (210 years), this event dominates the estimate of
natural variability; we treat the variability estimate
based on this simulation with caution.

Furthermore, the limited length and high autocorre-
lation of the time series of the detection variable de-
rived from the natural variability data introduces sam-
pling uncertainties in the estimate of the natural vari-
ability of the detection variables. To correct for
sampling errors in estimating the natural variability of
the detection variable from short time series, such as
the observations, we use Monte Carlo simulations. The
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underlying assumptions of this approach are that the
noise is Gaussian and generated by an AR (1) process.
Although this is undoubtedly a simplification, we re-
gard the sampling uncertainties as small compared with
the other uncertainties of the variability data. '

There are some indications that the variability in the
instrumental record is greater than the variability earlier
in the paleo-time series (Fig. 4). This relationship sug-
gests that a variability estimate based on the instru-
mental period yields a conservative estimate of the sig-
nal to noise ratio. This gives us some added confidence
that a significant warming has in fact been observed.

The shortcomings of the present estimates of natural
climate variability cannot be readily overcome. How-
ever, the next generation of models should provide us
with better simulations of natural variability. In the fu-
ture, more observations and paleoclimatic information
should yield more insight into natural variability, es-
pecially on longer timescales. This would enhance the
credibility of the statistical test. Moreover, the results
of the EIN simulation, as well as new simulations with
CO, and aerosol forcing (Mitchell et al. 1995; Hassel-
mann et al. 1995), indicate that the signal of anthro-
pogenic climate change is now expected to emerge
from the background noise. Thus, although we shall
never be able to overcome the basic uncertainty that
any detection approach depends upon an estimate of
natural variability whose reliability cannot be assessed
rigorously, the next years might add to our confidence
that an anthropogenic climate change signal is con-
tained in the observations.

Although we consider anthropogenic greenhouse gas
forcing to be the most likely candidate, we cannot yet
uniquely attribute the observed abnormal warming to
this mechanism. The main contribution to our detection
variable comes from the increase of the global mean
temperature. Model simulations of the climate response
patterns for various competing external forcing mech-
anisms (and their possible nonlinear interactions) com-
bined with multiple-fingerprint detection methods are
needed to enhance our confidence that the present
warming has indeed been caused by anthropogenic
greenhouse gas forcing.
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