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ABSTRACT

Empirical downscaling procedures relate large-scale atmospheric features with local features such as station
rainfall in order to facilitate local scenarios of climate change. The purpose of the present paper is twofold:
first, a downscaling technique is used as a diagnostic tool to verify the performance of climate models on the
regional scale; second, a technique is proposed for verifying the validity of empirical downscaling procedures
in climate change applications.

The case considered is regional seasonal precipitation in Romania. The downscaling model is a regression
based on canonical correlation analysis between observed station precipitation and European-scale sea level
pressure (SLP). The climate models considered here are the T21 and T42 versions of the Hamburg ECHAM3
atmospheric GCM run in ‘‘time-slice’’ mode. The climate change scenario refers to the expected time of doubled
carbon dioxide concentrations around the year 2050.

The downscaling model is skillful for all seasons except spring. The general features of the large-scale SLP
variability are reproduced fairly well by both GCMs in all seasons. The climate models reproduce the empirically
determined precipitation–SLP link in winter, whereas the observed link is only partially captured for the other
seasons. Thus, these models may be considered skillful with respect to regional precipitation during winter, and
partially during the other seasons. Generally, applications of statistical downscaling to climate change scenarios
have been based on the assumption that the empirical link between the large-scale and regional parameters
remains valid under a changed climate. In this study, a rationale is proposed for this assumption by showing
the consistency of the 2 3 CO2 GCM scenarios in winter, derived directly from the gridpoint data, with the
regional scenarios obtained through empirical downscaling. Since the skill of the GCMs in regional terms is
already established, it is concluded that the downscaling technique is adequate for describing climatically chang-
ing regional and local conditions, at least for precipitation in Romania during winter.

1. Introduction

The study of climate change due to the ongoing in-
crease of greenhouse gas concentration in the atmo-
sphere is a topical issue in climate research. General
circulation models (GCMs) are the tools that are most
widely used to generate scenarios of climate change for
impact assessments. The GCMs supply useful infor-
mation for global or large scales spanning several nodes
of the GCM’s global grid. It is not a priori clear how
reliably a given GCM simulates regional climate on the
scale of very few grid points. Naturally, GCM output
cannot be directly used on the local scale of single grid
points or below. However, users from, for example, ag-
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riculture and water resources often ask for information
below the mesh size.

One of the reasons for the possible failure of the
models on the regional scale is given by the spatial
resolution, which provides an inadequate description of
the structure of the earth’s surface. Most climate models
still operate on a T21 resolution, which is equivalent to
a grid size of about 625 km 3 625 km at the equator.
The upcoming generation of models is integrated with
a T42 resolution (of about 300 km 3 300 km at the
equator) and the models with the highest resolution so
far (e.g., T106 of about 125 km 3 125 km resolution),
unfortunately, are not available for long-term experi-
ments in the near future. Only short ‘‘time-slice’’ ex-
periments are available (Bengtsson et al. 1995). Another
reason for the difficulty of interpreting global climate
model output on the regional scale is the spatially uni-
form parameterization of the subgrid-scale processes
that is sometimes inadequate for different points of the
world.
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FIG. 1. Location of the 14 Romanian stations used in this study.
The shading indicates the topography of the region including the
Carpathian Mountains (only elevations above 500 m are marked).
The gray area in the lower-right corner marks the Black Sea.

A possible solution for obtaining some information
on the local scale from climate model output is ‘‘downs-
caling’’ procedures, which use dynamical or statistical
models to relate large-scale information from GCMs
(considered to be reliably modeled) to regional or local
parameters. Each dynamical or statistical approach has
its own disadvantages and advantages. A universal
downscaling method valid for all variables and all
regions is difficult to find (von Storch 1995b). An over-
view of currently used techniques is collected in a spe-
cial issue of Climate Research (Kaas et al. 1996; Bürger
1996; Conway et al. 1996; Katz and Parlange 1996;
Hewitson and Crane 1996; Fuentes and Heimann 1996).

In this paper a statistical downscaling procedure
based on canonical correlation analysis (CCA) as pro-
posed by von Storch et al. (1993) is used. Similar pro-
cedures have been proposed by Wigley et al. (1990),
Karl et al. (1990), and Harrison et al. (1995). Some
conditions have to be satisfied for this procedure to be
useful. Most importantly, the GCMs should be capable
of reproducing the large-scale variability realistically.
Second, the relationship between the large-scale and
regional-scale parameters has to be strong; that is, the
local climate parameter as estimated through the statis-
tical model should account for a significant part of the
observed total variance.

The purpose of the present paper is twofold. First,
we use the downscaling technique as a diagnostic tool
for verifying the performance of climate models on the
regional scale. We then propose a technique for veri-
fying the skill of empirical downscaling procedures un-
der changing climate conditions. The case considered
is seasonal precipitation in Romania, the downscaling
model consists of a regression technique based on CCA
using European-scale air pressure fields as predictors.
The climate models are the T21 and T42 versions of
the ECHAM3 atmospheric GCM of the Hamburg Max
Planck Institute/German Climate Computing Center
(MPI/DKRZ). The climate change scenarios refer to the
expected time of doubled carbon dioxide concentrations
around the year 2050.

The paper is organized as follows. Section 2 presents
the data used in this study. The downscaling technique
is briefly described in section 3, whereas details on the
method of determining the most skillful downscaling
models are contained in the appendix. In sections 4 and
5, we investigate the skill as well as the limitations of
the ECHAM3 GCM (T21 and T42 resolution) with re-
spect to simulating regional precipitation in Romania
and representing its link with the large-scale circulation.
In section 6, we compare the estimates of climate change
with respect to precipitation in Romania as derived di-
rectly from the GCM 2 3 CO2 simulations and indi-
rectly using the downscaling technique. The conclusions
of the study are presented in section 7.

2. Data
Observational data used in this paper are time series

of monthly precipitation totals at 14 Romanian stations

and mean monthly sea level pressure (SLP) between
1901 and 1990. The location and names of the Roma-
nian stations are displayed in Fig. 1. For SLP the area
between 308–558N and 58–508E has been selected. The
monthly SLP data from the National Meteorological
Center (now known as the National Centers for Envi-
ronmental Prediction) analyses have been supplied by
the National Center for Atmospheric Research with a
resolution of 58 3 58 (Trenberth and Paolino 1980). For
both parameters, seasonal anomalies have been com-
puted by subtracting the long-term seasonal mean from
the detrended time series.

In addition, we used gridpoint SLP and precipitation
from so-called time-slice simulations (T21 and T42 res-
olution) with the ECHAM3 atmospheric GCM run at
the DKRZ (Cubasch et al. 1996). The advantage of the
time-slice method is that the atmospheric model can be
integrated with high resolution for several decades
around a future time of interest. For this purpose, the
T21, T42, and T106 ECHAM3 atmospheric models
were forced with the greenhouse gas concentration cor-
responding to this time of interest, whereas sea surface
temperature and sea ice boundary conditions were taken
from a transient coarse-grid (T21) simulation of the
ECHAM1/LSG coupled atmosphere–ocean model
(Roeckner et al. 1992; Cubasch et al. 1992) using grad-
ually increasing greenhouse gas concentrations accord-
ing to the IPCC IS92a scenario (‘‘business as usual’’).
The SST and sea-ice distributions were chosen as cli-
matological means computed from the decade around
the expected time of doubled greenhouse gas concen-
trations, which, in that model, occurs around model year
60 and can be linked to around 2050. Therefore, these
time-slice experiments represent (high resolution) equi-
librium runs for the time of doubled CO2 and are re-
ferred to as 2 3 CO2 time-slice experiments. Corre-
sponding control runs have been performed using pres-
ent-day CO2 concentrations and SST and sea ice dis-
tributions as boundary conditions and referred to as 1
3 CO2 time-slice experiments.

In this paper, we use a 50-yr integration of the T21
and a 30-yr integration of the T42 2 3 CO2 time-slice
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experiments to infer information on regional climate
change under doubled CO2 concentrations. These sim-
ulations are compared with corresponding 30-yr 1 3
CO2 time-slice control simulations. Results from the
time-slice experiments at T106 resolution have not been
considered here because only 5 yr of integration are
available for this model, which was considered too short
to confidently infer statistical information on the link
between seasonal European SLP and regional precipi-
tation. All SLP fields were interpolated from the GCM
T21 and T42 Gaussian grids to the 58 3 58 grid of the
SLP analyses.

3. Methods

The performance of the GCMs with respect to sea-
sonal precipitation in Romania is assessed by comparing
the gridpoint precipitation simulated by the time-slice
control experiments (T21 and T42 resolution) with ob-
served precipitation. This comparison is performed with
respect to the following characteristics:

R mean state given by the long-term average of seasonal
precipitation amounts

R spatial variability given by the first two empirical or-
thogonal function (EOF) patterns

R link between the local precipitation variability and the
large-scale circulation (represented by European-scale
SLP) given by the first two canonical correlation pat-
terns (see below) of the local- and large-scale param-
eters.

By comparing the mean states, a potential bias in the
precipitation simulation of the model can be identified.
The second and third criteria involve only the anomalies
from this mean state. EOF analysis is used to check if
the model is able to realistically simulate the spatial
variability of regional precipitation, whereas CCA is
used to test for the model’s representation of the main
mechanisms controlling the local climate variability.

The statistical downscaling procedure proposed by
von Storch et al. (1993) is used to infer local information
about seasonal precipitation in Romania from the sea-
level air pressure field at the European scale. This meth-
od has also been used by Werner and von Storch (1993),
Gyalistras et al. (1994), Cui et al. (1995), Heyen et al.
(1996), and Busuioc and von Storch (1996). It is based
on CCA (Barnett and Preisendorfer 1987; von Storch
1995a), which selects pairs of spatial patterns of two
space–time-dependent variables (the large-scale and the
regional or local-scale climate parameter) such that their
time components are optimally correlated. The first
CCA pair gives the maximum correlation between the
two parameters, being followed by the second CCA pair
and so on. Because the coefficients are normalized to
unity, the canonical correlation patterns represent the
typical strength of the signal. Prior to the CCA, the
original data are projected onto their EOFs thus elim-
inating unwanted noise and reducing the dimensions of

the data space. Those EOFs that explain most of the
total variance are retained for further analysis. Only
EOFs explaining at least 1% from the total variance are
considered.

For the purpose of downscaling, a subset of these
CCA pairs is then used in a regression model to estimate
the local parameter from the large-scale variable using
the correlation coefficients between the respective time
components. The large-scale variable can, for example,
be taken as observations from a different time interval
thus resulting in ‘‘reconstructed’’ local values or from
GCM output. The performance of the downscaling mod-
el is sensitively dependent on the number of the EOFs
retained for the CCA and the number of CCA com-
ponents used in the regression model. Most commonly,
the optimum number of retained EOFs is determined in
such a way that using one more EOF would change the
canonical correlations only a little (Werner and von
Storch 1993; von Storch 1995a). In the present study,
the optimum choice for the number of EOFs retained
in the CCA analysis and the number of CCA time com-
ponents used in the regression model has been deter-
mined simultaneously such that the skill of the model
is high and does not substantially change after the ad-
dition of new components. Here, the skill of the downs-
caling model is expressed by the variance explained by
the reconstructed local values as a fraction of the total
observed variance or, alternatively, by the correlation
between observed and reconstructed values. More detail
on this procedure of choosing the optimal number of
EOFs and CCA patterns is given in the appendix. It is
only noted here that the whole observational period was
divided into two subintervals and the skill of the models
was considered for both the fitting period and the in-
dependent validation period. The final models that have
been selected as optimal and are used in the remainder
of this paper are highlighted in boldface in Table 1.
Finally, it should be noted that the correlation is over-
estimated when obtained via CCA from a finite sample
(e.g., von Storch 1995a).

4. The skill of GCMs for simulating the
precipitation in Romania

In this section, we present an assessment of the per-
formance of the ECHAM3 time-slice models with re-
spect to regional precipitation in Romania and SLP vari-
ability on the European scale. First, the main features
of the observed precipitation climate in Romania are
described in section 4a in terms of long-term means and
the first two EOF patterns. This climate is then compared
to the precipitation as simulated by the ECHAM3 T21
and T42 time-slice control experiments. As has been
mentioned in the introduction, the application of downs-
caling techniques to GCM results is based on the as-
sumption that the large-scale parameter is simulated re-
alistically by the GCM. Therefore, the first two EOFs
of SLP of the observations and the two control exper-
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TABLE 1. The skill of the statistical downscaling models for the two periods 1901–40 and 1941–90 and for different combinations of the
number of EOFs of SLP and precipitation (PP) retained for the CCA analysis and the number of CCA pairs used in the statistical model.
The model skill is expressed in terms of the (reconstructed) precipitation time series obtained from applying the downscaling model to the
large-scale observed SLP fields: fraction of total variance explained by the reconstructed values, and correlation coefficient between recon-
structed and observed time series (averages over all stations, respectively). The optimal combination is indicated in boldface (for spring,
none of the combinations was considered skillful).

Season

Number of
EOFs

SLP PP CCAs

Skill of downscaling model

Variant 1

Fitting for
1941–90

Validation for
1901–40

Variant 2

Fitting for
1901–40

Validation for
1941–90

Winter 2
3
4
5
6
6
6

2
3
4
5
6
6
7

2
3
4
5
5
6
6

0.57/0.77
0.66/0.81
0.67/0.82
0.66/0.83
0.72/0.85
0.79/0.89
0.79/0.89

0.24/0.60
0.08/0.61
0.14/0.64
0.28/0.73
0.28/0.67
0.41/0.74
0.40/0.74

0.35/0.59
0.35/0.60
0.55/0.74
0.53/0.73
0.54/0.74
0.57/0.75
0.57/0.75

0.41/0.72
0.36/0.65
0.57/0.81
0.62/0.82
0.62/0.83
0.54/0.79
0.54/0.79

Spring 2
3
4
5
6

2
3
4
5
6

2
3
4
5
6

0.29/0.54
0.38/0.62
0.52/0.72
0.52/0.77
0.54/0.74

0.07/0.29
0.09/0.33
0.14/0.39
0.14/0.39
0.20/0.45

0.38/0.62
0.39/0.63
0.40/0.63
0.41/0.61
0.42/0.64

—
—

20.18/0.17
20.11/0.29
20.12/0.25

Summer 2
3
4
5
6
6
7
8

2
3
4
5
6
6
7
8

2
3
4
5
5
6
7
7

0.24/0.49
0.24/0.49
0.34/0.59
0.55/0.74
0.54/0.73
0.56/0.75
0.56/0.75
0.56/0.75

0.13/0.39
0.10/0.35
0.33/0.57
0.39/0.65
0.41/0.66
0.35/0.63
0.38/0.64
0.38/0.64

0.09/0.30
0.09/0.30
0.22/0.47
0.44/0.66
0.54/0.73
0.54/0.73
0.55/0.74
0.58/0.76

0.10/0.33
0.10/0.33
0.05/0.27
0.22/0.49
0.35/0.61
0.32/0.59
0.33/0.60
0.36/0.63

Autumn 2
3
4
5
6
6

2
3
4
5
6
6

2
3
4
5
5
6

0.13/0.38
0.13/0.30
0.17/0.64
0.42/0.65
0.57/0.76
0.62/0.79

0.01/0.11
20.02/0.04

0.15/0.54
0.31/0.56
0.46/0.70
0.48/0.70

0.03/0.18
0.26/0.52
0.44/0.69
0.46/0.68
0.45/0.68
0.45/0.68

0.15/0.40
0.16/0.42
0.31/0.60
0.37/0.62
0.35/0.61
0.35/0.61

iments are compared in section 4b. Only the first two
EOFs are discussed because these are generally describ-
ing the most important modes of variability and are
considered sufficient for this purpose.

a. Regional precipitation in Romania

The interval 1941–90 has been selected as repre-
senting the current climate in Romania. The main fea-
tures of the seasonal precipitation in Romania can be
described as follows:

R The seasonal precipitation amount decreases from
west to east with a maximum in the northwest and/
or southwest (except for summer when the maximum
is recorded in the northwestern and central part).

R The highest precipitation amounts are recorded in the
summer and the smallest in autumn.

R The first EOF shows the same sign of variability over
the entire country with a maximum in the northwest
and southwest. The second EOF pattern exhibits two
regions with opposite sign separated by the Carpathian
chain showing the influence of the topographic struc-

ture of the Carpathians. Similar results have been pre-
sented by Draghici (1988).

As an example, the patterns of current Romanian pre-
cipitation climate are shown for the winter season. Fig-
ure 2a shows the spatial distribution of the long-term
mean of the winter precipitation amount at the 14 Ro-
manian stations. Figures 3a and 4a show the first two
EOF patterns of the winter precipitation, respectively.

The precipitation fields from the T21 and T42 control
run experiments were analyzed in the same manner as
above. Due to the coarse GCM resolution it is difficult
to do a reasonable comparison between the in situ ob-
servations and the GCM gridpoint data, especially for
the T21 model. Also, GCM gridpoint values of precip-
itation represent areal averages rather than point values
[see, e.g., Osborn and Hulme (1997) for a discussion
of this issue]. Therefore, only the gross features of the
spatial distributions of long-term means and EOFs are
discussed.

Both models show a decrease of mean precipitation
amount from west to east except for T21 in winter. The
precipitation maximum in summer and minimum in au-
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FIG. 2. Long-term mean of winter (DJF) precipitation as derived
from station observations for the period 1941–90 (a) and from the
gridpoint simulations of the ECHAM3 T21 (b) and T42 (c) models.

FIG. 3. The pattern of the first EOF of Romanian winter precipi-
tation as derived from the observed seasonal amounts (a) and as
derived from the seasonal amounts simulated by the ECHAM3 T21
(b) and T42 (c) models. The fraction of the respective total variance
explained by each EOF is given in the upper right of each panel.

tumn are correctly reproduced only by the T21 model.
Figures 2b and 2c present the spatial distributions of the
long-term mean of gridpoint precipitation simulated by
the T21 and T42 models, respectively, for the winter
season. It can be seen that the T21 model does a poor
job in simulating the west–east decrease of precipitation
over Romania although the picture would get better if
the information from the two southern grid points were
included in computing areal averages for Romania. The
T42 model captures the west–east decrease of mean

precipitation although the gradient is somewhat smaller
than in the observations.

The general features of the first two EOF patterns of
observed seasonal precipitation in Romania are reason-
ably well reproduced by all models in all seasons, name-
ly, the same sign for the first EOF and the opposite sign
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FIG. 4. As in Fig. 3 but for the second EOF of Romanian winter
precipitation.

structure for the second EOF. For the winter example,
the patterns of the two EOFs for the T21 and T42 control
runs are shown in Figs. 3b,c and 4b,c, respectively. Sim-
ilar results have been presented by Busuioc (1994) from
the analysis of the Romanian gridpoint precipitation
simulated by a coupled ocean–atmosphere model (T21
version of ECHAM1/LSG; Cubasch et al. 1992). In gen-
eral, the good agreement between the observed and

model patterns is noted. However, in the second EOF
of the model outputs the Carpathians no longer mark
the dividing line between negative and positive precip-
itation anomalies, both models simulate negative anom-
alies east of the Carpathians. This is most likely due to
the missing or incomplete representation of this moun-
tain range in the models, nicely illustrating the effect
of the coarse resolution on regional performance.

b. Sea level pressure variability

The main features of the observed SLP fields at the
European scale are presented by the first two EOF pat-
terns. Except for the summer season, the principal mode
of SLP variability (given by the first EOF pattern) is
represented by a meridional circulation over Europe
(see, e.g., Busuioc and von Storch 1995, 1996). During
summer a zonal circulation is the principal mode of
variability. The second mode is characterized by two
regions of opposite sign with a northwest–southeast zero
line for the winter and spring seasons, a zonal circulation
for the autumn season, and a cyclonic/anticyclonic
structure centered over the Black Sea for summer. Fig-
ures 5a and 6a present the first two EOF patterns for
the winter season.

In comparing these observed EOF patterns with the
ones obtained from the GCM simulations, one faces the
fact that sometimes the patterns of the first two EOFs
are similar but the order is reversed. This is only due
to differences in the explained variances; that is, the
models might overestimate the importance of one pat-
tern against the other as compared to observations. Be-
cause we are interested in the main features of variability
we do not discuss these discrepancies in the following
but evaluate only the similarity of the patterns, regard-
less of order.

The T21 model reproduces the first two observed
EOFs in winter and summer and only one of both in
spring and autumn, respectively. For the T42 model, the
first two EOFs are realistic in winter and autumn, where-
as only one EOF coincides with the observed pattern
in summer and spring, respectively. As an example,
Figs. 5b,c and 6b,c show the first and second EOF pat-
terns for winter derived from the T21and T42 simula-
tions, respectively. By and large, there is good agree-
ment between the general features of the patterns (EOF
2 of the T21 simulation has to be compared to the first
observed EOF, and vice versa).

Both the precipitation (section 4a) and SLP EOFs
were also computed for the 1901–40 subinterval and
for the whole 1901–90 period in order to test the stability
of these patterns over time. In general, the results were
very similar except that, in some cases, EOF 1 and EOF
2 were switched due to slight differences in the ex-
plained variances.
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FIG. 5. The pattern of the first EOF of winter SLP as derived from
the observed seasonal mean (a) and the seasonal mean simulated by
the ECHAM3 T21 (b) and T42 (c) models. The fraction of the re-
spective total variance explained by each EOF is given in the upper
right of each panel. The border of Romania is outlined in solid.

FIG. 6. As in Fig. 5 but for the second EOF of winter SLP.

5. Link between Romanian precipitation and the
large-scale circulation

In section 5a, we discuss the statistical link between
observed Romanian precipitation and the large-scale cir-
culation using CCA applied to the 1941–90 interval. In
section 5b, we evaluate if the T21 and T42 GCMs are
able to reproduce this relationship and, thus, how well
they reproduce the physical mechanisms that control
regional precipitation variability. Again, similar to sec-
tion 4, this link is presented in terms of only the first
two canonical patterns since these are the most impor-
tant (that is, those with the highest correlations between

SLP and precipitation component time series). This is
done for brevity but these CCA pairs are still the first
two of the optimal number obtained from maximizing
the skill of the downscaling model (as described in sec-
tion 3 and the appendix). For both models, the number
of EOFs retained for the CCA has been chosen such
that addition of more EOFs did not change the CCA
patterns and their correlations substantially.

a. Observed link: Construction of statistical
downscaling model

The first two CCA pairs for winter for the 1941–90
period are presented in the top row of Figs. 7 and 8,
respectively. They represent those patterns of SLP and
precipitation with the highest and second highest cor-
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FIG. 7. The patterns of the first CCA pair of winter mean SLP (left) and winter total precipitation (right) in Romania as derived from
observation (top) and simulations of the ECHAM3 T21 (middle) and T42 (bottom) models.

relation between the associated time coefficient time
series satisfying the side condition that, for each vari-
able, the first and second time coefficients are orthog-
onal. For the first CCA pair the correlation coefficient
between the precipitation and SLP time series is 0.91.
Thus, this pair associates high (low) pressure over Eu-
rope and the Mediterranean Basin (top left pattern in
Fig. 7) with below- (above-) normal precipitation at the
14 stations in Romania (top right pattern in Fig. 7),
which is very reasonable from a physical point of view.
The SLP pattern explains 36% of the total seasonal mean

SLP variance and the precipitation pattern explains 53%
of the total precipitation variance. The second CCA pair
(Fig. 8) (0.80 correlation coefficient between the pre-
cipitation and SLP coefficient time series) associates a
southeasterly (northwesterly) flow over Romania with
above (below) normal precipitation in the extra-Car-
pathian and below (above) normal precipitation in the
intra-Carpathian region. The SLP pattern explains 35%
of the total SLP variance, whereas the precipitation pat-
tern explains 17% of the total precipitation variance. It
is also noted that the patterns of the two CCA pairs are
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FIG. 8. As in Fig. 7 but for the second CCA pair.

similar to the first and second EOFs for both variables
(Figs. 3–6), respectively (up to a change of sign, which
is not relevant for linear techniques like EOF and CCA).

For the other seasons (not shown) the main mecha-
nisms of this link are also plausible from a physical
point of view but they are not related to the principal
modes of the SLP variability (given by the first EOF),
although, for precipitation, these patterns are similar.
During spring, above (below) normal precipitation is
maximally correlated to a cyclonic northwesterly (an-
ticyclonic southeasterly) circulation over Europe (cor-
relation coefficient of 0.76). In the summertime (Bu-

suioc and von Storch 1995) above- (below-) normal
precipitation over Romania goes along with a cyclonic
(anticyclonic) structure centered over the Black Sea
(correlation coefficient of 0.75). During autumn, the first
CCA pair associates below- (above-) normal precipi-
tation in Romania to an anticyclonic (cyclonic) structure
over the northern part of Romania (correlation coeffi-
cient of 0.84).

All these CCA patterns are similar to the ones com-
puted from the 1901–40 interval, except for spring. For
winter and summer, they are also similar to the patterns
discussed in Busuioc and von Storch (1995, 1996) for
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FIG. 9. Winter precipitation anomalies for 1901–1990 as derived from local station measurements (solid line) and as derived indirectly
from the observed European-scale SLP anomalies by using the downscaling model (dashed line). Given are the spatial average for all 14
stations (a) as well as the anomalies for 3 individual stations: Ocna Sugatag (b), Tg. Jiu (c), and Bucharest (d).

the whole 1901–90 period. We conclude that the con-
nection between local precipitation and the large-scale
circulation did not substantially change during the last
century, except for spring. This is very important for
the derivation of a reliable statistical downscaling mod-
el. In fact, the instability of the spring patterns caused
the validation of the downscaling models for the in-
dependent periods to fail (cf. Table 1), so that, for spring,
no skillful model could be found.

Figure 9 illustrates as an example the application of
the downscaling model induced by the empirical link
described above to the observed 1901–90 SLP anom-
alies in winter at the European scale. Note that, for this
application, the trend was not removed from the SLP
time series. Figure 9a shows the spatial average of the
local precipitation at the 14 Romanian stations as ob-
served and as reconstructed by the downscaling model,
Figs. 9b–d show the same information for three indi-
vidual stations situated in different topographical en-
vironments: Ocna Sugatag, Tg. Jiu, and Bucharest.
There is no substantial trend in both observed and es-

timated time series, and the interannual variations are
generally reproduced by the downscaling model indi-
cating its skill in winter. There are some more discrep-
ancies for the individual stations, which is to be ex-
pected due to local (e.g., orographic) effects.

b. GCM simulated link: Verification of regional GCM
simulations

The CCA analysis presented in section 5a for the
observed data was repeated for the T21 and T42 GCMs
using the models’ gridpoint precipitation and SLP fields.
Again displaying only results for the winter example,
the middle and bottom rows of Figs. 7 and 8 present
the first and second CCA pairs derived from the T21
and T42 GCM grid points, respectively. For both GCMs,
the patterns for both SLP and precipitation coincide
fairly well with those derived from the observations
(neglecting the reversed signs of the T21 pattern in Fig.
7 and of the T21 and T42 patterns in Fig. 8 with respect
to the observed patterns). Again, the role of the Car-
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pathians in separating positive and negative anomalies
is underrepresented in the second CCA precipitation pat-
terns of the models. In both models, the correlation co-
efficient between SLP and precipitation patterns is about
0.91 for the first and about 0.81 for the second CCA
pair. The explained variance of the first CCA SLP pat-
tern is overestimated by the T42 model (59% against
36% observed), possibly due to the overestimation of
the explained variance of the first SLP EOF used in the
CCA. The variance explained by the first CCA SLP
pattern derived from the T21 simulations is underesti-
mated against observations. Both models underestimate
the variance explained by the second CCA pair.

For the other seasons, the link between SLP and re-
gional precipitation is strong as well although it does
not reproduce the observed one in all cases even if it
shows a physically reasonable mechanisms. In sum-
mary, the empirical link is correctly reproduced by the
T42 model for winter and autumn and partially for
spring (only first CCA pair). The T21 model captures
the observed link for winter and spring and partially for
summer (only first CCA pair). Thus, the two models
may be considered skillful with respect to regional pre-
cipitation anomalies during these seasons. This state-
ment does not affect the ability of the GCMs to correctly
simulate the mean regional precipitation climate; that
is, the models might still have a bias with respect to
regional precipitation. As was discussed in section 4a
this is, in fact, the case for some seasons in either the
T21 or T42 model. Notwithstanding such model defi-
ciencies, it has been demonstrated that downscaling
methods can be useful tools for assessing the perfor-
mance of GCMs on the regional scale. A similar tech-
nique has been used by Noguer (1994).

6. Changes in Romanian precipitation due to
doubled CO2 concentrations

A major caveat in any estimation of climate change,
whether derived from statistical or dynamical models,
is the fact that the parameters of these models are fitted
to current climate conditions. In climate models, this is
done by representing subgrid-scale processes through
empirical parameterizations that are calibrated against
the present-day climate. In statistical downscaling mod-
els, regional variables are parameterized directly by
large-scale climate variables. These parameterizations
represent empirical relationships that are not known to
remain valid in changed climates. This is particularly a
problem in downscaling applications where only a sin-
gle relationship is considered (in our case the SLP–
precipitation relationship), possibly missing other pro-
cesses that determine the local variable in a changed
climate (e.g., water vapor processes). On the other hand,
global climate models consider many more processes
and the complex interactions between them. Once we
have verified that a GCM adequately represents a re-
gional climate parameter such as precipitation, and thus

many processes determining this parameter, we might
place more confidence into climate change estimates for
this local parameter simulated by the GCM. Therefore,
we propose that such regional climate change estimates
derived from GCMs proven as being reliable can be
used to support the assumption that a downscaling mod-
el remains valid under a changed climate.

In this section, we illustrate this approach by consid-
ering estimated changes in the seasonal precipitation in
Romania due to doubled CO2 concentrations. The
changes derived directly from the gridpoint precipitation
simulated by the T21 and T42 models are presented and
then compared to the changes derived indirectly by us-
ing the downscaling model. This comparison is useful
only for the skillful downscaling models (i.e., all sea-
sons except spring) and for reliable GCMs with respect
to regional precipitation. The T21 and T42 climate mod-
els are considered reliable if they reproduce the ob-
served large-scale flow variability (given by the most
important EOFs of SLP; section 4) as well as the link
between SLP and regional precipitation variability (giv-
en by the most important CCA pairs; section 5). These
conditions are satisfied by the T42 model for winter and
autumn. The T21 model reproduces the first two EOFs
in winter and summer but only the first CCA in summer.
Therefore, only the winter season is considered here.

Figure 10 (right column) shows the changes of winter
precipitation in Romania as derived from the gridpoint
precipitation of the T21 and T42 models (2 3 CO2

minus control). The statistical significance of these dif-
ferences has been tested using the adjusted t-statistic,
which explicitly takes into account serial correlation
(Zwiers and von Storch 1995). As noted earlier the grid-
point precipitation should be interpreted as representing
areal averages, also the results for the T21 model should
be considered with caution since it is difficult to derive
Romanian estimates from the four grid points present
in that model. From both models we can infer approx-
imately the same overall climate change signal: a mod-
erate increase in the northwestern part of Romania and
a decrease in the south and southeast. The differences
in the T21 model are not statistically significant, where-
as, for the T42 model, they are significant at the 5%
level only in the southeastern part.

The downscaling model derived from the observed
link between large-scale circulation and regional pre-
cipitation has been applied to the 2 3 CO2 SLP anom-
alies computed relative to the control runs. The climate
change signal is presented in terms of the long-term
mean of the downscaled precipitation anomalies. The
results are shown in the left column of Fig. 10. An
agreement between the gridpoint signal and the downs-
caled signal can be noted—namely, an increase in the
northwestern region and a decrease in the rest of the
country (except for the T21 model, which shows an
increase at the Black Sea coast). The agreement is less
convincing for the T21 model, which might be due to
the fact that this model only partially reproduces the
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FIG. 10. Changes due to doubling CO2 of winter precipitation in Romania as derived from the ECHAM3 T21 (top row) and T42 (bottom
row) time-slice experiments. The changes derived directly from the gridpoint precipitation of the GCMs (right column) are differences
between the means from the 2 3 CO2 and the 1 3 CO2 experiments. The climate change signal displayed in the left column represents the
long-term mean of the downscaled precipitation anomalies derived indirectly from the GCM-simulated European-scale SLP anomalies (2 3
CO2 minus 1 3 CO2).

large-scale SLP variability: it overemphasizes an almost
zonal flow pattern over Europe and underestimates the
importance of the most important EOF with a cyclonic
northwesterly flow over Romania (see section 4c).

In summary, we showed that the downscaled climate
change signal for regional precipitation is similar to the
signal directly obtained from the GCM grid points (es-
pecially the T42 model). We argue that this might be
considered to support the notion that the empirical link
between large-scale SLP and precipitation continues to
characterize an important mechanism under changed cli-
mate conditions, at least the 2 3 CO2 climate of the
ECHAM3 models. Thus, the downscaling model seems
to be applicable to derive climate change scenarios at
local stations in Romania from GCM climate change
experiments.

One difficulty in the above approach results from the
differences in the data type represented in the left and
right columns of Fig. 10—that is, the fact that the GCM-
derived patterns of precipitation change are represented
on a gridpoint basis while the changes derived indirectly

from the downscaling model are given in terms of sta-
tion precipitation. An alternate way of testing whether
the circulation–precipitation link remains unchanged in
a perturbed climate would be to develop the CCA link
from the control integration of the GCM and apply the
resulting downscaling model to SLP from the perturbed
GCM runs to predict perturbed grid-box precipitation.
These changes could be directly compared to the grid-
point precipitation simulated by the GCM. This ap-
proach, however, would involve a more detailed com-
parative study of the performance of the control inte-
gration with respect to the observed climate and is there-
fore reserved for a follow-up study.

7. Conclusions

The purpose of the present paper is twofold: first, a
downscaling technique is used as a diagnostic tool to
verify the performance of climate models on the re-
gional scale under present-day climate conditions; sec-
ond, a technique for verifying the applicability of em-
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pirical downscaling procedures in climate change ap-
plications is proposed. The case considered is seasonal
precipitation in Romania; the downscaling model con-
sists of a linear regression based on canonical correla-
tion analysis (CCA) using European-scale air pressure
fields as predictors. The climate models are the T21 and
T42 versions of the ECHAM3 atmospheric GCM. The
climate change scenario refers to the expected time of
doubled carbon dioxide around 2050.

The general features of the spatial variability of sea-
sonal precipitation in Romania are reproduced fairly
well by the T21 and T42 ECHAM3 simulations for all
seasons in spite of the highly irregular topography of
the region—namely, the decrease of precipitation
amount from west to east, the uniform sign for the first
EOF and a northwest–southeast opposite sign structure
for the second EOF. However, some details are not re-
produced because of the coarse spatial resolution of the
models. Also, the seasonal cycle is not correctly repro-
duced by the models. Only the T21 model captures the
maximum precipitation in summer and the minimum in
autumn.

The link between seasonal precipitation variability in
Romania and European SLP variability given by the
CCA is strong for all seasons, especially for winter and
autumn. This link appears to be primarily related to the
first SLP EOF only for the winter season. For the other
seasons, the main mechanism of this link is related to
the regional SLP patterns. By considering two indepen-
dent subintervals, 1901–40 and 1941–90, of the obser-
vational period it was found that, in the past century,
this connection was maintained unchanged in time for
all seasons except for spring. Consequently, defining
skill in terms of the subinterval independent from the
fitting interval, the downscaling model, which is built
on the basis of this link is skillful for all seasons but
spring.

The GCMs reproduce these links for winter and au-
tumn (T42), respectively, winter and spring (T21) (the
1941–90 link in case of spring). Thus, during these sea-
sons, these climate models may be considered skillful
in simulating the mechanisms that control regional pre-
cipitation through the large-scale circulation.

The large-scale SLP variability given by the first two
EOF patterns is reproduced by both models in winter.
Therefore, for this season the change of precipitation
due to doubled CO2 concentrations was estimated (using
the downscaling model derived from observations) and
compared with the GCM estimates derived directly from
the gridpoint data. The two signals are consistent (es-
pecially for T42 model) and show an increase of pre-
cipitation in the northwestern region and a decrease in
the rest of the country. Thus, it can be concluded that
the downscaling technique is adequate for describing
climatically changing regional and local conditions in
Romania in winter. The rationale for this conclusion is
given by the following line of arguments: 1) for present-
day climate conditions, the downscaling model (or,

equivalently, the CCA patterns) was proven to be skill-
ful for this season in representing local and regional
precipitation through its link to the large-scale circu-
lation; 2) by comparing this observed with the GCM-
simulated link it was shown that the GCMs are reliable
in modeling regional precipitation and the processes de-
termining the link between precipitation and the large-
scale circulation; 3) because the GCMs consider many
more processes than the statistical downscaling model
we are more confident that the GCMs are also reliable
in climate change applications; 4) if the downscaled
climate change estimates can be shown to be similar to
the GCM-simulated changes on a regional scale, we
argue that the (single) relationship used in the downs-
caling approach will continue to account for a large part
of the precipitation variability under changed climate
conditions and that the observed link can be used to
estimate local and regional precipitation from large-
scale SLP taken from GCM climate change experiments.

It is stressed that this approach is not proof that the
downscaling technique can be used for changed cli-
mates, we argue only that, if the similarity in argument
4 can be demonstrated, it is more likely that the em-
pirical relationship remains valid. We therefore believe
that this is an improvement in the sense of increased
confidence over the mere assumption commonly made
in downscaling studies that the downscaling relationship
can still be used in changed climates. Even if the GCM-
simulated and downscaled regional changes are similar
it might be the case that both models are wrong for the
changed climate because both the empirical parameter-
izations in the GCM and the single empirical relation-
ship in the downscaling model might not be valid an-
ymore. But under this scenario it would be unlikely that
the complex interactions in the GCM between a mul-
titude of processes influencing precipitation—respec-
tively, the single relationship in the downscaling
model—would yield the same, but wrong, result. If, for
a climate change experiment, the GCM-simulated and
downscaled estimates are different, no conclusions can
be drawn about the validity of either model. It could be
that the GCM is correct but the single relationship (e.g.,
SLP–precipitation), and thus the downscaling model, is
not sufficient to represent regional precipitation. On the
other hand, it is also possible that the downscaling re-
lationship remains valid but some other parameteriza-
tions in the GCM do not.

It might be interjected that, if a reliable GCM is avail-
able, why bother with the downscaling. There are two
reasons why downscaling is still useful and even needed.
First, in the introduction we distinguished between the
skill, or lack thereof, of climate models on the large,
the regional, and the local scale. GCMs are considered
to have skill on the large and no skill on the local scale.
They might be skillful on the intermediate, regional
scale but this is not a priori clear. In the case considered
above, the GCMs were indeed shown to be reliable on
the regional scale with respect to precipitation in Ro-
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mania. However, (statistical) downscaling methods are
still required to obtain estimates at the local (station or
subgrid) level, both for present and future climate con-
ditions. Second, in section 6 it was demonstrated how
relatively cheap (1 3 CO2 and 2 3 CO2 time slice)
GCM experiments can be used to support the assump-
tion that the statistical downscaling relationship remains
valid under changed climate conditions. This result sug-
gests that the downscaling procedure might be applied
to (long) transient GCM experiments with gradually in-
creasing CO2 concentrations. Thus, the downscaling
technique appears as cost-effective alternative to com-
putationally expensive downscaling approaches with re-
gional or global high-resolution dynamical models.
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APPENDIX

Selection of CCA Model

In this appendix, the selection procedure for the op-
timum number of EOF and CCA components in the
construction of the statistical downscaling model is pre-
sented. As discussed in section 3, the skill of the model
depends on the number of EOFs retained for the CCA
analysis as well as the number of CCA time series used
in the regression model. The sensitivity of the skill
against the choice of the fitting interval is also discussed.

We use a split-sampling approach by dividing the
complete interval 1901–90 into two subintervals 1901–
40 and 1941–90. First, the downscaling model is fitted
by estimating the EOFs and CCAs from the 1941–40
interval and validated for the independent dataset from
the 1901–40 period (variant 1). Then the situation is
reversed, the model being fitted from the 1901–40 data
and validated for 1941–90 (variant 2). The skill of the
model is expressed by two measures: the fraction of
total observed variance explained by the reconstructed
(downscaled) precipitation values, and the correlation
coefficient between the reconstructed and observed pre-

cipitation time series (averages over all stations, re-
spectively). Table 1 lists these measures of skill sepa-
rately for the fitting and validation intervals, by using
different combinations of EOF and CCA patterns. Only
EOFs that explain at least 1% from the total variance
are considered. For the same number of EOFs, the skill
is highest for the maximum number of CCA patterns
(i.e., to the number of EOFs) used in the regression
model, or one less in three cases. For the sake of brevity,
only these cases are presented in Table 1. Other studies
revealed that, in some cases, a smaller than the maxi-
mum number of CCA time components might be suf-
ficient for a good skill (cf. von Storch et al. 1993; Werner
and von Storch 1993; Heyen et al. 1996).

In general, the skill of the model for the fitting period
increases with the number of EOFs retained for the CCA
analysis. The optimum combination of EOFs and CCAs
used was determined in such a way that either the skill
for the two validation periods (respectively, their av-
erage) reaches a maximum, or that an increase by one
EOF (CCA) would change the skill only by a small
amount.

For example, looking at the validation interval 1941–
90 in the case of winter (last column), retaining five
EOFs for SLP and precipitation for the CCA analysis
and using five CCA time series in the regression model
seems to be the optimum combination since the skill
(explained variance of 0.62 and correlation coefficient
of 0.82) changes only a little by using more components.
However, for the 1901–40 validation interval, the ex-
plained variance for this combination is much smaller
than for the case of six EOFs and six CCAs (0.28 against
0.41). On average, using both validation intervals and
both measures of skill, this latter combination is optimal.
Surprisingly, for variant 2 the skill for the validation
interval is higher than for the fitting interval. This might
be explained by the high quality of data during the
1941–90 period and the small number of missing data.
The optimum combinations used in this paper are high-
lighted in boldface in Table 1. For spring, no model
with an acceptable skill for the validation period exists,
although the correlation coefficients for the first two
CCA pairs are close to, for instance, the summer values
(also manifested in the reasonable skills for the fitting
intervals in spring, see Table 1). Obviously, this is due
to the fact that, for spring, the first two CCA pairs are
different for the two subintervals (as presented in sec-
tion 5) so that the link between regional precipitation
and large-scale circulation is not stable over time. As a
result, the skill of the model breaks down if derived
from the independent validation subintervals.

It can also be seen from Table 1 that the skill of the
downscaling model for winter is reasonably high even
if only the first two EOFs are retained for the CCA,
whereas, for summer and autumn, more EOFs are nec-
essary to obtain high skills. This might be due to the
fact that, for winter, the link between local precipitation
and large-scale circulation (in terms of the first two CCA
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pairs) is primarily related to the first SLP EOF and
secondarily to the second SLP EOF. These two patterns
account for 71% of the total SLP variance. For the other
seasons, the main mechanisms of this link are not related
to the principal modes of SLP variability (given by first
EOF) even though, for precipitation, the EOF and CCA
patterns are similar. Also, the correlation coefficients for
the second CCA pairs are not as high as during win-
tertime.
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