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Abstract. In this paper a highly simplified model is considered which de-
scribes the interaction of anthropogenic climate changes represented by the
influences due to the enhanced emission of CO, resulting in the increase of
the averaged surface air temperature on one side, and the economical effects
described by the abatement costs for the reduction of emissions on the other
side.

The model is formulated as a linear—quadratic optimal control problem with
a compact control region. By applying the standard necessary conditions, a
multipoint-boundary—value problem is derived and its numerical solution ob-
tained by multiple-shooting technique is presented. Special attention is paid
to the computation of the reachable set of the systemn and to the dependence
of the control structure on the final state prescribed.

In order to smooth a certain irregular behaviour of the solutions near the end
of the arbitrarilly fixed time-interval, an additional monotonicity constraint
for the CO,~concentration is introduced. Solutions of this extended optimal
control problem are presented too and they are compared with the former
solutions.
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1. Introduction

In recent years there has been a growing interest in modelling the global climate changes
which are due to the man~made increase in the atmospheric concentration of greenhouse
gases (cf. IPCC-report (5], Sreenath {11], Tahvonen et al. [14]). The main effects due to
the enhanced emissions are an increase in the global mean temperature of the Earth and
a rise in the global mean sea level. Under a "business as usual” scenario, the IPCC group
expects by the end of the next century anthropogenic CO,—emission of about 16 GtC ',
an increase of about 3 K in the global mean temperature, and a rise of severel tens of
centimeters in the global mean sea level.

Due to this situation, it is of interest to consider realistic models of different complexity
for these quantities which allow to propose strategies for the reduction of emissions and
to assess the effects of such strategies with respect to the climate changes and to the

CLLLVLLLY .

In this paper, as a first step a very simplified model due to Tahvonen et al. [14] iz con-
sidered, which describes the interaction of climate changes and economy. The model is
constructed in the form of an optimal control problem with two state variables, repre-
senting the globally averaged tropospheric CO,—concentration and the globally averaged
near surface air temperature. The control variable represents the reduction of the CO,-
emnissions related to the "business as usual level” of the IPCC study. The simplifications
of the model are characterized by the limitation to:

— just only one greenhouse gas, namely CO,,
- to globally averaged quantities with just one memory term for each quantity,
— and to a linear mode] for the behaviour of the system in time.

The aim of the model is to determine reduction strategies for the CO,—emissions such
that a certain prescribed final situation with respect to the state variables can be reached
within a time-period of hundred years. Further, the reduction strategy determined is an
optimal one in the sense that with this strategy the total cost of reduction (abatement
costs) is minimized.

In this paper we do not take into account the so-called adaptation costs, i.e. the costs
which are due to the adaptation of the world economy to an increased global mean tem-
perature. An estimation and a modelization of these costs would be very uncertain (cf.

[14]).

2. A Model for Reduction of CO;,—Emissions

In this section we describe the model used for the interaction of climate and economy
introduced by Tahvonen et al. [14].

The dynamic system is given for two state—variables

The unit GtC means gigatons carbon; giga == 10°
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C(t): globally averaged tropospheric concentration of carbon dioxide at time ¢,
T(t): globally averaged near-surface air-temperature at time ¢.

Both quantities are given as deviations from their preindustrial values round about the

year 1860. Thus, for our time the following initial data are appropriate:
C(0) = T3ppm, T = 0.7K. : (2.1)

The time behaviour of these quantities is described by the following linear system of
ordinary differential equations

Ct)y = BE@®) — oC(2)

. (2.2)
) = pClt) — aT(t).

The driving force E(t) is the annual anthropogenic carbon dioxide emission, measured
in gigatons carbon dioxide pro year.

As reference behaviour of E(t) we take the IPCC—prediction for the "business-as—usual”
scenario, which we approximate by a linear function in time

Es + Qt
6.7 GtC/a (2.3)
0.143 GtC/a?.

Ey(t)
Eo
Q

Now, in equation (2.2) the emission E(t) is substituted by

E() = E(t) - (1 - R()), (2.4)
where R(t) € [0,1] denotes the rate of abatement from the uncontrolled emission Ej(t).

The parameters o, 3, o, andu are assumed to be constant. Their values are empirically
determined by fitting the observed record of concentrations and temperatures during the
period 1860 — 1985 to the model (2.2) (cf. Maier-Reimer, Hasselmann [6], Marland {7],
and Tahvonen et.al. {14]):

a=0.03a!
o = 0.018 a~t
B = 047 ppm/GtC
= 0.4519-s K/GtC/a.

(2.5)

In Fig. 1 the solutions of the initial-value—problem (2.1), (2.2) are plotted along a time-
interval of ¢; = 100a for different choices of a constant control function R(t) :

R(t) = 0.0, 0.25, 0.5, 0.75,and 1.0.

Further the solution of (2.1), 2.2} is plotted for a time-variant control function R(t)
which is chosen such that the CO,~emission is kept fixed E(t) = Eo .

In Fig. 2 the same trajectories are shown in the state plane (C,T). The dashed line indi-
cates those state variables (C,T) which are stationary with respect to the temperature,
i.e. T = 0. The arrows indicate the motion of the state with respect to time 0 <t < 100.
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Fig. 1. Time behaviour of the COj-concentration and the temperature for different
abatement strategies R(t) = 0.0, 0.25, 0.5, 0.75, and 1.0 and for E(¢) = E,.
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Fig. 2. Trajectories in the state plane (C,T) corresponding to different choices of the
control function R(¢) as indicated in Fig.1.

3. Statement of the Problem

We consider the model of Section 2 as an optimal control problem with the rate of aba-
tement A(t) as control variable. The aim is to determine R(t), 0 < ¢ < t;, within a
finite time region of t; = 100a such that a prescribed final state (Cy,T}) is achieved
with a minimum amount of abatement costs. '

These costs are measured by the functional

IR = / A(R) el gt (3.1)
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Here, r is the rate of growth of net output, and § the rate of discount. A(R) describes
the costs of abatement. In this paper we use a simple quadratic ansatz: ‘

and the control constraints
0 < R() < 1. (3.4)

Before we apply the necessary conditons of optimal control theory, it seems to be useful to
determine those final states (C;,Ty) which can be achieved from {C{0),T(0)) using an
admissible control function, i.e. R(t) is measurable and satisfles (3.4). The set of these

final states is called the reachable set or the set of attainability.

It is well-known from optimal control theory (cf. Strauss(13], Halkin [4]) that each point

of the reachable set can be achieved using only control functions with values on the

boundary of the control region, so—called bang-bang controls. Therefore, it is obvious
that the boundary of the reachable set consists of those final states which are reached by

bang-bang controls with just one switching point = € [0,100] , i.e.

0, 0Lt
Rr(t)—{l e (3.5)
Or Vice versa
- 1, 0Kt
1) = - .
(1) {0 , T<t<L1. (3:6)

Using these control functions one obtains points of the boundary of the reachable set
by solving the initial-value problem (2.1), (2.2) numerically. And, by variation of the
parameter v € [0,100], one obtains the whole boundary of the reachable set.

In Fig. 3 some of these trajectories are shown together with the boundary of the reachable
set.

Note again, that precisely the points in the ”ellipse” can be achieved with a suitable
reduction strategy. So, for instance, the preindustrial situation (corresponding to the
origin) cannot be reached within the next hundert years by any kind of reduction strategy.

4. The Necessary Conditions

In this section we apply the necessary conditions of optimal control theory to the CO,-
emission model in order to build up a multipoint boundary value problem with switching
conditions for the state- and adjoint variables of the control problem. The notation used
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Fig. 3. Reachable set and trajectories with bang-bang control.

is taken from Bryson, Ho [1]. Note, that the problem is nonlinear with respect to the
control and, therefore, the necessary conditions for constrained optimal control problems
(state-constraint of order zero, cf. Maurer[10]) have to be applied.

Let Ac, Ar denote the adjoint variables with respect to C and T, respectively. Then,
the Hamiltonian of the problem is given by

H = A(R) ™9t + Ao {BE(t)(1—R) — ¢C} + M {uC — aT}. (41)

Here, the classical notation pf the Hamiltonian is used instead of the so—called current va-
lue Hamiltonian (cf. Feichtinger, Hartl {3}, Tahvonen et al. {14]) due to the nonautonomous
state equations. Both Hamiltonions differ only by a factor e(r=%)!

From (4.1) we obtain the following adjoint differential equations:

Ae = ode — phr

;\T = a)\;r-.

The optimal control function is characterized by the minimum principle.

Therefore, for optimal control functions in the interior of the control region we have the
following necessary condition

dA
d—ﬁ e("'s)‘ = B Eb(t) Ac . (43)
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Especially for (3.2) we observe that the Hamiltonian has a unique minimum with respect
to the control R which is given by:

én
2

Lb(f) eld-n)t Ac

—
N
1N

Reivd

Biree =
thus, the minimum principle yields the following optimal control law

0 » i Rpee(t) <0
R(t) = ! Reeo(t) , if 0 < Rpeelt) <1 (4.5)
L1 i Reeelt) > 1.

AVe oottt LY T a el e s peven by the staten and adioint sauations 19 N
nLuugCLHCL, LUTC DLuUddal Y —ValuT PIvUIciilio 51 VO LY LUT sbald™ alid alljulily CHUAMIVLL (4.4,
(4.2), where the control law is substituted according to (4.4) and (4.5). The corresponding

boundary conditions are given by the relations (2.1) and (3.3).

5. Numerical Solution

The numerical solutions of the boundary value problem described in Section 4 are obtained
by means of the multiple shooting code BNDSCQO (cf. Bulirsch (2], Stoer, Bulirsch [12],
Oberle [9], [10]).

For the application of this method to our boundary value problem the switching structure
of the solution, i.e. the number and the relative position of the subarcs with different
control strategies in Eq. (4.4) has to be estimated a priori. If y,...,7, denote the
junction points (or switching points) between subarcs with different control laws, the
following switching conditions have to be satisfied:

Rfreelm) = 0 or Rfpee(ms) = 1 (k=1,...,s) . {(5.1)

Numerically the switching points are treated as unknown parameters of the boundary
value problem which are determined together with the state- and adjoint variables at the
multiple shooting nodes by means of the damped Newton method such that Eq. (5.1) is
satisfied.

Often a reliable estimation of the switching structure of the solution can be found by
inspection of the totally free control, i.e. one solves the two—point boundary value pro-
blem (2.1), (2.2), (3.3), and (4.2) with R = Rp., neglecting the constraints (3.4). Due
to the linearity of this auxiliary boundary value problem the solution can be determined
pumerically by multiple shooting technique within one or two iteration steps nearly in-
dependent of the initial data. Now, one determines those subarcs where the totally free
control violates the constraints.

Of course, this way of estimating the switching structure may fail for critical values of the
final data C; and Ty. Therefore it is worthy to note that the boundaries of the regions
of all final data (Cy,Ty) whose corresponding optimal control history has a certain
prescribed control structure can be determined explicitly by solving suitable parameter—
dependend boundary value problems with switching conditions.
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Fig. 4. Reachable set and regions of different control structure.

Three of these regions of different control structures are shown in Fig. 4.

The region (D) , characterized by the boundary Py, Py, P2, Ps, Py, is the region of those
final values (Cy,Ty) for which the optimal control is totally free, i.e. the restrictions
(3.4) are not active. The boundary of this region is characterized by the condition that
the totally free control has just one isolated contact point with the boundary of the
control region (or two contact points in the edges). The different subarcs of the boundary
are characterized by the conditions given in Table 1.

For the numerical computation one substitutes one of the two boundary conditions (3.3)

by the corresponding boundary or switching condition given in Table 1 and varies the

other boundary value Cj or Ty, respectively.

The region (2) marked in Fig. 4 indicates those final states which are achieved by an
optimal control function of the structure

Rfree - Rmax =1 - Riree -

Here, the upper boundary P; Ps is indicated by the switching structure : Rfoo — Hmax
and the additional boundary condition Rgee(ts) = 1 . The lower boundary P3Py is
indicated by the switching structure : Rpo. — Rmax — Rfee 2nd the additional
boundary condition Rfen(ty) = 0 .

Finally, the region (3) marked in Fig. 4 indicates the final states for which the corre-
sponding optimal control function has the structure

Riree - Apin =0
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Table 1. Boundary of the control region ()

boundary arc characterizing condition
P@ P1 Rfree(()) = O
AP Riree(ts) = 1
P P Rirge(r) = 1,0 <7 <1
Py P Rpeelty) = 0
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Fig. 5. State- and control histories for the final data Ty = 3,2.5,2.

The lower boundary P; P of this region is characterized by the control structure above

o
.

~1

together with a switching condition Rgeo(r) = 1 indicating that the free control has

an isolated contact point with the upper constraint of the control region.

For the remaining parts of the reachable set the corresponding optimal control histories

contain nontrivial subarcs on the upper and lower constraints of the control region.

We do not want to stress these regions of different control structures in detail because
the final states of practical interest are those which are near the stationary points for the

final temperature (dashed line in Fig. 4).

In Fig. 5 the state histories C(t), T(t), the optimal control functions FR(t), and the
corresponding time history for the emissions E(t) are shown for the prescibed final data

T, = 3,25, and 2.
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In Fig. 6 the solution histories are shown for Ty =1.5, 1, and0.7.

4

. . . dT
In each case C; is chosen such that the final temperature is stationary, i.e. —d-t—(t 7) = 0.
According to the position of the final state in the reachable set (cf. Fig. 4) the optimal
control history contains a subarc with maximum reduction for T; =3, 1.5, 1, and 0.7 .
For Ty = 2.5 and Ty = 2 the optimal control is totally free.

In the following Table 2 the corresponding values of the performance measure I(R), i.e.
the total amount of abatement costs (the unit is about 10'? dollars, c.f. [14]) are given.

Tahle 2.  Minimal abatement costs for different values of the final state

T() Clts) 1(Ropt)
3.0 200.00 5.9071
2.5 166.67 8.9804
2.0 133.33 14.320
1.5 100.00 21.919
1.0 66.67 32.393
0.7 46.67 41.687

6. Regularization of the Asymptotié Behaviour

A serious drawback of the treatment of finite time horizonts is the somehow irregular
behaviour of control and state functions near the end of the time interval considered. This
is due to the fact that the formulation of the optimal control problem used in Section 3 does
not take into account the behaviour of the state for times after the artificially prescribed
final time ;.

In Figs. 5, 6 examples are shown for which the emissions grow again at the end of the time
period (hundred years) considered. Therefore, using this (optimal) control function, the
COs—concentration would grow after the final time too, if one assumes that the reduction
strategy varies continuously. Thus, the stationarity of the state in ¢ = t; cannot be
maintained for ¢ > iy, independently of the further reduction management.

In order to overcome this irregular behaviour in [14] a certain penalty term is added to
the performance index which minimizes a weighted sum of the two state variables in the
end point of the time interval. However, this method has the drawback that it is not clear
how to choose the weight parameters appropriately.

Also, the consideration of an infinite planing horizon does not necessarily overcome this
difficulty, because we would like to achieve a stable situation (stationarity) with respect
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Fig. 6. State- and control histories for the final data 7} = 1.5,1,0.7.

to the emissions, the CO,-concentration and the increased temperature on a low level
within a reasonable finite time-interval.

Therefore, in this paper we propose an alternative way to overcome the irregular behaviour
near the end of the planing interval. To this end we add the following inequality constraint
(monotonicity constraint)

Cty < 0, forallt > t;, (6.1)

to the optimal control problem. Here, ¢; denotes the first stationary point of the con-

centration C(t). With this restriction the COs-concentration is not allowed to increase

after the first time we have achieved the stationarity of Cf{t).

Explicitly, (6.1) is an additional inequality constraint to the control and can be reformu-
lated as follows:

o C(t)
R FAOR

In this form the constraint (6.1) can be handled in the same way as the more simple
control constraints (3.4). More precisely, if (6.2) is active on a certain subinterval [r;, 7],
one introduces the corresponding switching points 7y, 7, as additional variables in the
boundary-value problem, one uses the boundary control

Bpound(t) =1 — ; gb((?) (6.3)

R(t) forallt > ¢ . (6.2)
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Fig. 7. State- and control histories for the final data Ty = 2,1.5,L

on this subinterval, and demands (switching conditions) that the boundary control and
the free control coincide at these switching points.

In Fig. 7 the optimal time histories of the state and control variables for this problem are
shown. For the final temperature we chose again Ty = 2, 1.5, and1. Cy is chosen such
that the final temperature Ty is stationary.

The behaviour of these trajectories can be compared directly with the solution behaviour
shown in Fig. 5-6 for the problem without monotonicity constraint. One observes that

due to (6.2) the basic constraint (3.4) is not longer active (for these final data however)
and that the stationarity with respect to bath state variables is reached already at the

A€ SLallONAllly 4D Tespech LO DO skale varliaDiCs 15 feaclicd 4l1€ad

corresponding switching time.

Of course the demand on the reduction function R(t) is more severe for the constrained
problem.

In Table 3 the corresponding values of the optimal performance measure I(R) are listed.
Compared with the corresponding values in Table 2 one observes an only mild increase in
the reduction costs.

7. Conclusions

In this paper, we have presented numerical solutions of a constrained linear-quadratic
optimal control problem which describes the interaction of climate changes and economy.
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Table 3. Minimal abatement costs under additional monotonicity constraint

T(ts) C(ts) I(Ryp)
2.0 133.33 14.339
1.5 100.00 22.727
1.0 66.67 37.579

The two-dimensional state repregsents the globally averaged CQs—concentration and the
globally averaged increase of temperature. The aim was to determine optimal reduction
strategies for the COj—erissions such that the present state is transfered to a desired
(stationary) final state within a finite time—interval in such way that the total abatement
costs are minimized.

The dependence of the control structure on the prescribed final data are investigated and
the reachable set and the regions of different control structure are computed by solving
parameter-depending multipoint boundary value problem.

In order to smooth the irregular behaviour of the solutions near the end of the arbitrarilly
fixed time—interval, an additional monotonicity constraint for the COy~concentration is
introduced. Solutions of this extended optimal control problem are presented and they
are compared with the former solutions.

The authors are well aware of the simplicity of the model considered, which may allow only
to predict a reasonable tendency of the efforts necessary to solve the practical problem.
Further investigation are necessary to establish more realistic models which may take into
account the effects of different greenhouse gases with different memory terms and more
refined (possibly nonlinear) equations of motion.
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